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1. Introduction. Recently there have been significant

attempts for extending the well-understood theory of stationary

processes to classes of nonstationary ones by many writers.

These are motivated by real applications. Some of these efforts

have been illustrated and analyzed in [31]. A class which

bas a superficial structural similarity is the harmonizable

family. This class was originally introduced by Loeve (cf.[21]).

A closely related but a more general concept is due to Bochner

[2] for essentially the same purpose. Slightly later, Rozanov

[34] has also defined a concept, also called "harmonizable",

which is weaker than that of Loive's. Each of these notions

is inspired by the stationarity of Khintchine's (also termed

wide sense or weakly), but each is different from one another.

For a systematic study of these classes, it is necessary to

determine their interrelations. One of the main purposes of

this paper is to present a detailed and unified structural

analysis of these processes and obtain characterizations of

the respective classes. This involves a free use of some

elementary aspects of vector measure theory; and it already

raises some interesting problems to be resolved. One finds

that Lo~ve's definition is more restrictuve than Rozanov's,

and that Bochner's concept is mathematically the most elegant

and general. Further in the Hilbert space context, it is

shown that Bochner's and Rozanov's concepts coincide. An

interesting geometrical feature is that the Bochner class is

always a projection of a stationary family. Also Bochner's
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concept is based on Fourier vector integration and this identi-

fication yields different characterizations, one of which

extends a result of 4elson's (12] to certain Banach spaces.

Further, in many cases, it results that a process of Bochner-

Rozanov class is a 'pointwise' limit of asequence of harmon-

izable processes in the sense of Loive. A brief account of

various contributions, for comparison, is appropriate at this

point.

Soon after introduction of the harmonizability concept

by Lo6ve in the late 1940's, an abstract generalization of

it was considered by Cramer (3]. His is a very general

notion, but it only has a superficial contact with Fourier

analysis. In a key special case, the first step relating the

stationary and Loeve harmonizabile concepts was taken by

Abreu [1]; and it stimulated much later work. On the other

hand in the middle 1950's Kamp4 de Feriet and Frenkiel (cf.

[15], [16]), and independently Parzen and Rozanov, have con-

sidered processes which are generalizations of stationary as

well as harmonizable types, and which are usually different

from those of Cramer noted above. However, they retain some

contact with Fourier analysis, and are sometimes referred to

as "asymptotically stationary'. A detailed analysis of this

work and some generalizations are discussed in [31] where

further references can be found. The decisive step in extending

the stationarity concept is that of Bochner's as the following

work will demonstrate. Apparently unaware of this work in (21,
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Rozanov [34] has initiated an abstract study of spectra for

a class labelled "harmonizable" which with a careful study

turns out to coincide with Bochner's class for second order

processes, and strictly includes that of Lo&ve's. But a

systematic study of Bochner and Loive classes in Hilbert space

was given only by Niemi in his thesis [26] who showed that

they are different types of Fourier transformations of certain

Hilbert space valued measures. He also established essentially

that the Bochner class in Hilbert space is the projection of

a stationary family in [27] and [28]. The latter point was

clarified and the same result was obtained by slightly different

methods in [22]. Recently an extension of the last work was

announced in [33]. I have presented most of the material in

Sections 2 - 6 in my graduate seminar lectures in the academic

year 1979-80. The following account is a refined version of it.

The key domination inequality, on which the projection

or "dilation' results noted above depend, itself is based on

an aspect of some resultsof A. Grothendieck's. The methods

of [22], [27] and [28] rest on A. Pietech's rendition of

Grothendieck's work, whereas in what follows this is based

on some properties of the theory of p-summing operators from

[20]. I believe that this yields a better understanding of

the problem with additional insight, not afforded by the

earlier work. Thus the present paper is devoted to a compre-

hensive, unified, and extended treatment of the structure of

the classes of Bochner and Rozanov. It is of some interest
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to note that an essentially equivalent characterization of

Bochner's Hilbert space version could be obtained from the

early paper of Phillips' [29], which seems to have been over-

looked by almost all the vector measure theorists and stochas-

tic analysists. It is, in a sense, subsumed under a relatively

recent work of Kluvanek's [19]. The relevance of [29] will

be noted at appropriate places below. But most of all, Bochner's

paper [2] has not been accorded the central place it deserves

in the probabilistic treatments on the subject. I hope that

the present work will bring the many key ideas of [2] to the

forefront.

The structural analysis here is thus developed mostly

for scalar processes, but including random fields and some

multivariate indications in the last section, in order to lay
out a basis for later research on prediction and filtering

problems on them. Some of these applications were indicated

in [2] and detailed analysis on filtering for Loeve type (to

be called strong hereafter) harmonizable processes was recently

completed in [18] for "polynomial filters". This has to be

extended for the Bochner-Rozanov type (termed weak below)

harmonizable processes. In this latter work it turns out that

the theory of bimeasures and the (non-absolute) integration

of Morse and Transue ([23], [24]) will take the center stage.

This difference has not been fully appreciated in the literature.

(The most comprehensive and precise characterizations are

summarized in Theorems 7.3 and 7.4.) For vector valued

processes in both (weak and strong) cases, some new technical



problems have to be resolved. The same is true of random

fields on general locally compact groups. All these aspects

are important in applications. Except for some indications

in Sections 7 and 8, no specialized applications are detailed

at the present time. For accessibility and convenience, the

next three sections treat harmonizable processes, and the

remaining five consider the more general random fields, with

a natural transition. However, an essentially self-contained

exposition (modulo some standard measure theory) is presented

here.

Let us now introduce the terminology and present precise

and analytical details of the preceding discription. Throughout

the paper the following notation is used: ]R for reals, C

for complex numbers, Z for integers, Rn the n-dimensional

number space, LCA for locally compact abelian, and E for

expectation. Also a step function is a mapping taking finitely

many values on disjoint measurable sets and a simple function

on a measure space is a step function vanishing outside of a

set of finite measure. Usuallyoqr bar denotes complex con-

jugation. Other symbols and terms are explained as they occur.
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2. Harmonizability and stationarity. Let (fEP) be a

probability space and L 2(,ZP) , or Lo (P) for short, be

the space of (equivalence classes of scalar square integrable

22subspace of elements of L (P) having zero mean values, for

2 2convenience. Then LO(P) (as well as L (P)) is a Hilbert

space under the usual inner product (f,g) J'dP , and a

mapping X]R + LO(P) is called a stationary time series or

process (in the wide or Khintchine sense, and this qualification

will be omitted below), if for any s,t in IR , the covariance

r(s,t) of X(s) , X(t) depends only on the difference s - t

Thus r(s,t) = r(s-t) where

r(s,t) - E(X(s)X-)) = J' X(s)Xt) dP (X(s),X(t)), s,tER. (1)

The following analysis is valid in an abstract Hilbert space

1 if the "covariance" is interpreted as its inner product,

without reference toan underlying probability space. However,

this is not really a generalization since any Hilbert space

is isomorphic (and isometric) to an L2 (nt,) on some proba-

bility space (n,t,P) , (cf., e.g., [32], p. 414). Thus in

the following LO(P) , or an abstract space I , may (and will)

be considered according to convenience.

Observing that r(s,t) is of positive type (- positive

[semi-] definite), assume that r(.,') is jointly measurable

which is implied by the measurability of the random function

[X(t),t EIR) . In the stationary case by Bochner's classical

theorem, there exists a bounded, unique nondecreasing function
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F]R + such that

r(h) e J elth dF(t) , a.a.h ER , (Lebegue) , (2)
JR

and conversely every such F defines by (2), a measurable

(even uniformly continuous) covariance r . Then by the

classical Kolmogorov existence theorem (cf. e.g., [6], p.

608 ff; [32], Ch. I for this theorem and extensions), one

deduces the existence of a probability space (Q,E,P) and

a stationary process on it with r(') as its covariance.

It may be remarked that in (2), in the original (1932) version

Bochner assumed that r(.) is continuous, but soon after in

(1933) F. Riesz showed that measurability itself yields the

form (2). This general case was also used in [29].

The function F of (2) is called the spectral distribution

and the Baire measure p it generates (by 4:A + SAdF) is

its spectral measure. One verifies that fX(t),t E R is

mean continuous (i.e., E(JX(s) - X(t)I ) 0 as s 4 t)

iff (= if and only if) its covariance r(.,') is continuous

on the diagonal of JR xJR (cf., e.g., [21], p. 470). Thus

the stationarity is such a restriction that its measurability

and validity of (2) everywhere implies the mean continuity of

the process! So for some applications, it is natural to weaken

the hypothesis of stationarity, retaining some representative

features. This has been done by Loive under the name "harmon-

izable". For the reasons noted in the introduction, it will

be called strongly harmonizable. This is stated as:

Definition 2.1. A process X'! L (P) with covariance
0
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r(s,t) = E(X(s)Xt)) , is strongly harmonizable if r is the

Fourier transform of some covariance function p:IR xR 4C
of bounded variation, so that one has,

r(s,t) - IRJIR e s -itX' p(d%,dX') , s,t ER . (3)

Evidently if p concentrates on the diagonal of IR xR

then (3) reduces to (2). Note also that r is bounded and

uniformly continuous. Eventhough (3) is a natural general-

ization of (2), one does not have an elegant characterization

of an harmonizable covariance. In fact Loeve has raised this

problem ([21], p. 477). A solution of it was presented in

([30], Thm. 5). It is not effective in that the conditions

are not easily verifiable, though the characterization does

reduce to Bochner's theorem in the stationary case.

The preceding comment shows that the concept of strong

harmonizability, though an apparently natural generalization

of stationarity, does not have an efficient procedure which

enables its early recognition. There is however another real

drawback. Since strong harmonizability is derived from sta-

tionarity (so that every stationary process is harmonizable),

consider a'partial'series (X(n), n EZZ} of a stationary

series [X(n), n E Z] so that r(m-n) = E(X(m)Xn)),

X(n) E LO(P) , where X(n) = X(n) for finitely many n E ,

and = 0 for all other n EZ • Then it is clear that

(X(n),n E ZI is strongly harmonizable. However if X(n) = X(n)
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for infinitely many n , and - 0 for all other n , then

iX(n), n E1Z} is not necessarily strongly harmonizable, as

the following simple counterexample illustrates: Let

(fn,nE Z} C L2(P) be a complete orthonormal set (assuming

P to be a separable measure). Then r(m,n) 8 n  r(m-n).
rn-n

So tfn,n E 2Z is trivially stationary, and

r(m-n) ei(m-n) m,n E
-VT

Let fn f n > 0 , =0 for n : 0 . Then f(m,n) -

E(fm f n) - , if m = -n > 0 , = 0 otherwise. But i does

not admit the representation (3) for a covariance p of the

desired kind. Indeed, if (3) is true for some such p , then

i(m,n) will be its Fourier coefficient such that f(m,n) is

only non vanishing on a ray (m = -n > 0) . It is a consequence

of an important two dimensional extension by Bochner of the

classical F. and M. Riesz theorem that p must then be abso-

lutely continuous relative to the planer Lebesgue measure with

density p' Hence

r(m,n) - e, f' i (mx+ny) p'(x,y) dxdy
-VT -VT

But this implies r(m,n) 4 0 as ImI+InI 4 by the Riemann-

Lebesgue lemma, and contradicts the fact that r(m,-n) = I

as m = -n 4 . Hence r can not admit the representation

(3) so that tfn,n E ZZ is not strongly harmonizable. This

example is a slight modification of one due to Helson and

Lowdenslager ([13], p. 183) who considered it for a similar

purpose, and is given in [1] for a related elucidation.
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The preceding example and discussion motivate us to

look for a weakening of the conditions on the covariance

function leading to the representation (3) since it is natural

to expect each subset of a stationary series to be included

in the generalization, retaining the other properties as far

as possible. Such an extension was successfully obtained in

two different forms in the works of Bochner [2] and Rozanov [34].

The precise concept can be clearly stated only after some de-

tailed preliminaries.

The measure function p of (3) has the following properties:

(i) p is positive definite, i.e.
n n

p(s,t) = pts) , E Z ai~. P(si,s) > 0,
i=l j=l J a

(ii) p is-of bounded variation, i.e.,

n n
sup [ii Z fi IZp(ds,dt)I:Ai,Bj E B, disjoint] <-,(5)

i=l j=l Ai B i -

where 6 is the Borel a-algebra of R . If F:B x 8 + C is

defined by F(A,B) = I f p(ds,dt) , it follows from (4) and
AB

(5) that there exists a complex Radon measure 4 on JR

such that F(A,B) = 4(A ® B) , where A ® B EI ®0 , and i

is positive definite. On the other hand, the defining equation

of F implies that F is positive definite (so (4) holds

with p(si,sj) replaced by F(Ai,A.)) and (5) becomes
n n

V(F) = sup £ J Z IF(Ai.,Bj) I : Ai,B E R , disjoint < <. (5')
i=l j=1

But (3) is meaningful, if p is replaced by F under the

following weaker conditions.
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Let F R x B C C be positive definite and be a-additive

in each variable separately. Equivalently, if m(R,s) is the

vector space of complex measures on B , let v(A) - F(A,'),

A E a so that v:8 4 M1IR,S) is a vector measure. By symmetry,

v:B#- F(',B) is also a vector measure on 6 4 MOR,R) . But

tnOR,R) = I is a Banach space under the total variatior norm,

and hence v (as well as ;) has finite semi variation by a

classical result (cf. [8], IV.10.4). This means,

n
IIJvJv ) = supfil . aiv(Ai~)l1 : lail!l,Ai E 8,disjointJ < - . (6)

i=l
Transferred to F , this translates to:

n n
IIFIR x R) =sup( aE S F(AiA ):A i E B , disjoint,

a 1 < (7)

When (7) holds, F:8 x a 4 C will be called a C-bimeasure

of finite semi variation. It should be noted that the

a-additivity of F(',') in each of its components can be

replaced by finite adaitivity and continuity of F from above

at 0 in that IF(An,An)I 4 0 as An t ¢ . The desired

generalization follows from (7) if it is written in the following
n n

form. Let cp -= aiXA and 4r IZ bjxB , Ai E 8 , B. E B
i-l iXi j-l JB

and each collection is disjoint. Set

n n
Z ajF(Ai,Bj) (8)

Clearly I is well-defined, does not depend on the representa-

tion of p or r , and I(cp,cp) - 0 . So (q,*) - I(p,*) is
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a semi-inner product on the space of a-step functions. Hence

by the generalized Schwarz's inequality one has:
IIc,) 2 .5Ic~P)I** (9)

Taking suprema on all such step functions cp,4 such that

11C'1u : 1 , 11*11U < 1 (11.1u is the uniform norm), one deduces

from (9) and (7) thatn n .. (,B):li~ <,iB

lIFJIR)sup[UiFl jZ l ! : J  ',bE

disjoint} < IFIIR X 1R) , (< V(F)) . (10)

Thus lF11CR xJR) can be defined either by the middle term

(as in [34])or by (7). For a bimeasure, !IF11 % x]R) is also

called Fr4chet variation of F (cf. [23], p. 292.) and V(F)

the Vitali variation, (cf.[23], p. 298).

It should be emphasized that a set function F which is

only a bimeasure (even positive definite), need not define a

(complex) Radon measure on 3 . In fact such bimeasures do

not necessarily admit the Jordan decomposition, as counter

examples show. Thus integrals relative to F (even if

IFIIOR x 1R) < o) cannot generally be of Lebesgue-Stieltjes type.

Treating v:A F(A,*),A E 6 , as a vector measure into MlR,B),

one can employ the Dunford-Schwartz (or D-S) integral (cf.

[8], IV.10), or alternately one can use the theory of bimeasures

as developed in (23], (24]) and (39]. This is the price

paid to get the desired weakened concept, but it will be seen

that a satisfactory solution of our problem is then obtained,

and both these integrations will play key roles.
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Let us therefore recall an appropriate integration con-

cept to be used in the following. In ([34], p. 276) Rozanov has

indicated a modification without detailing the consequences.

(This resulted in a conjucture [34 ,p. 2831 which will be resolved

in Section 7 below.) Instead, a different route will be

*followed; namely the integration theory of Morse and Transue

will be used from (24] together with a related result of Thomas

([39], p. 146). However, the Bourbaki set up of these papers

is inconvenient here, and they will be converted to the set

theoretical (or ensemble) versions and employed.

Let F:8 x a 4 C be a bimeasure, i.e. F(',B), F(A,-)

are complex measures on 8 . Hence one can define as usual

([81,111.6),

Il(f,A) = f Z(t) F(dt,A) . (11)
IR

for bounded Borel functions f'R C 1 . Then il(f,-) is a

complex measure and in fact 11:6 4 B(R,8,C), the Banach space

of bounded complex Borel functions under the uniform norm, is

a vector measure. So one can use the D-S integral (recalled

at the beginning of the next section), defining
Il(f,g ) -(Ifj(t)jl(dt))(f) E C (12)

where f,g are bounded Borel functions. Similarly starting

with F(A,.) one can define 12 (f,g) . In general

1l(fg) 0 12(fg) . (13)

In fact the Fubini theorem need not hold in this context.

For a counterexample, see ((24], §8). If there is equality

in (13), then the pair (f,g) is said to be integrable relative

to the bimeasure F , and the common value is denoted I(f,g)
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and symbolically written as:

I(fg) - SIf f(s)7g) F(ds,dt) . (14)

This is the Morse-Transue (or MT-) integral. While a char-

acterization of MT-integrable functions is not easy, a good

sufficient condition for this can be given as follows, (cf.

[24], Thin. 7.1; (39], Thdor&me in §5.17). If f,g are step
n n

functions, so that f - Z aiXA , ZbjxB then clearly
i-l i jinl j

I(f,g) always exists and
n n

I(f,g) -Z Z ai6j F(AiB ) (15)

Next define for any c 2 0 , * > 0 , Borel functions,

f(cp,*) - sup(Il(f,g)l: Ilf r cp jj, rg * , f,gBorel
step functions

and if u,v are any positive functions,

I*(u,v) - inff(cp, *): (p z u, v, ci are Borel). (16)

Now the desired result from the above papers is this: If

(f,g) is a pair of complex functions such that Il(f,g) and

12 (f,g) exist and I*(jfj,jgj) < - then (f,g) is MT-integrable

for the C-bimeasure F . In the case that the bi measure F

is also positive definite and has finite semi-variation, then

each pair (f,g) of bounded complex Borel functions is MT-

integrable relative to F . Moreover, using the notations of

(7), one has

lI(f,g) I t IIFII .* 1fIju -  l1glu (17)

where IIFII - IFIIOR x]R) . It should be noted, however, that

the integrability of (f,g) generally does not imply that of

(jfj,jgj) , and the MT-integral is not an absolutely continuous

functional in contrast to the Lebesgue-Stieltjes theory, as
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already shown by counterexamples in [23] and [24]. Fortunately

a certain dominated convergence theorem ([24], Thm. 3.3) is

valid and this implies some density properties which can and

will be utilized in our treatment below. Also f is termed

F-integrable if (ff) is MT-integrable. If f - fl - f2 +

i(f -f4),f i ' 0 , then f is strongly F-integrable if each

fi is F-integrable, i - 1,-..4 . Note that, thus far, no

special properties of JR were used in the definition of the

MT-integral, and the definition and properties are valid if IR

is replaced by an arbitrary locally compact space (group intM

present context). This remark will be utilized later on.

With this necessary detour, the second concept is given as:

Definition 2.2. A process X'R 4.L2(P) , with r(.,.) as

its covariance function, is called weakly harmonizable if

r(s,t) - is( ') eit(' ) %eis 'itF(d,d'),s,tER, (18)
IR IR

relative to some positive definite bimeasure F of finite

semi variation where the right side is the MT-integral. [Some-

times F is called the "spectral measure" of r.]

In particular r is continuous and bounded, (by (17)).

Moreover, if F is of bounded variation, then the MT-integral

reduces to the Lebesgue-Stieltjes integral and (18) goes over

to (3). The following work shows that the process of the

counterexample following Definition 2.1 is weakly harmonizable.

Later several characterizations of weak harmonizability will

be given, using the fundamental work of [2] and related ideas.
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3. Integral representation of a class of second order processes.

In order to introduce and utilize the "V-boundedness" concept

of Bochner's, it will be useful to have an integral representation

of weakly harmonizable processes. This is done by presenting

a comprehensive result for a more general class including the

(weakl3 harmonizable ones. It is based on a method of Cramdr's

[3], and the resulting representation yields by specializations

both the harmonizable, stationary, Cramer class of [3], as well

as the Karhunen class (defined below). This is detailed as

follows.

Recall that if (0oa) is a measurable space (i.e., a

is a a-algebra of the set 00) and I a Banach space, then

a mapping Z:Q -+ I is called a vector measure if Z is

a-additive, or Z( U A- = Z(A.), AiEa, disjoint, the series'
iill 2 2converging unconditionally in the norm of I . If I = LO(P)

where (Q,Z,P) is a probability space, then a vector measure

is sometimes termed a stochastic measure. The integration of

scalar functions relative to a vector measure Z is needed,

and it will be in the seiise of Dunford-Schwartz ([8],IV.10).
n

This may be recalled quickly. If f = 1 aiXA , Ai E a

disjoint, then as usual
nJ f(s)Z(ds) -iZ aZ(AnAi) E I , A E Q (19)

Now if g:0 - C is a-measurable, and gn are a-step functions

such that gn4 g pointwise, then g is said to be

D-S integrable if for each A E a ,( A gn(s)Z(ds),n 1] c I
A
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is a Cauchy sequence. Then the limit, denoted 9A of this

* sequence is called the integral of g on A , and is denoted

as

J g(s)Z(ds) - lir f Jg(s)Z(ds), A E a . (20)
A n-'

It is a standard (but non-obvious) matter to show that the

integral is well-defined, independent of the sequence used,

and the mapping A-4 f g(s)Z(ds) is a-additive on a ,an

g fg(s)Z(ds) is linear. Also

hfJAg(s)Z(ds)I z hIgh1u Izh(A), f E B(QoaE) , (21)

where JIZJI(-) is the semivariation of Z (cf.(6)) which is

always finite on the a-algebra a [ If a is only a 8-ring

and no 4 a , then Z need not have finite semi variation on

a .L The dominated convergence theorem is true for the D-S

integral. (See (81, IV.l0, for proofs and related results.

The latter exposition is very readable and nice.)

The general class noted above is the following:

Definition 3.1 A process X'R - L2(P) , with covariance

r(.,.) , is said to be weakly of class (C) (C for Cramer) if

(i) there exists a covariance bimeasure F on JR x 1R of

locally bounded semi variation in the sense that
n n

F(A,B) - F(W), Z Z aiiiF(Ai,Aj)20, aiE C, Ai bounded,
i-i J-1i j

AiE6, l'i-n , and for each bounded Borel A c]R , if O(A) -

(AnB:B E 8) , then
n n

1hFI (AxA)-sup(I Z Z ai F(AiB 1: Jail l, Jbj all,
iElj-iAiBj E 13(A), disjoint] < ,
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(ii) there exists a family g 'R * C of Borel functions,

t EIR , such that I(1gsj,jg5s) < , s EJR , where I denotes

the MT-integral relative to F , such that one has (gt(X)

is often written as g(t,k) and g is strongly MT-integrable):

r(s,t) - I(gs, t) - _g(X)gT()F(dX,dX') , s,t ER . (22)

Remark. Note that in this definition F can be given by a

covariance function p since then for A = [a,b), and B = [c,d)

one defines (2 F)(A,B) as the increment p(b,d) - p(a,d) -

p(b,c) + p(a,c) and extend it to 8 x B . Also in (22) it

is possible that jIFII(R x3R) = - . If F has finite variation

on each compact rectangle of JR2 , then F determines a

locally bounded complex Radon measure, and the above class

reduces to the family defined by Cramer in [3], and called

class (C) and analyzed in [31]. If IIFIIR x]R) < - , then

one can take gt(%) - g(t,%) - e i r ) so that the weakly harmon-

izable class is included. Again it may be noted that JR can

be replaced by a locally compact space or an abelian group

in (22) so that MRn or the n-torus Tn is included.

To present the general representation, it is necessary

also to note the validity of the D-S integration embodied

in (20), (21) when the set functions are defined on arbitrary

6-rings instead of a-algebras, assumed in [8]. Further our

measure Z:fi 4 1 has the property that it is Baire regular

in the sense that for each A E "a and e > 0 , there exist

a compact C E 8 , open U E W such that C c A c U and
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IIZ(D)I < e for each D E 8 , D c U - C , where B is the

Baire (- Borel here) a-ring of JR . Even if IR is replaced

by a general locally compact space S , and 6 is its Baire

a-ring and Z:i 4 1 is a-additive, then Z is Baire regular

aand has a unique regular extension to the Borel a-ring of S

and actually Z concentrates on a a-compact Baire set SO0 C S.

Moreover if Z is weakly regular in that x'4Z is a scalar

regular signed measure x* E 1* , then Z is itself regular.

(See [19], pp. 262-263 for proofs and simple modifications

needed for the results of [8], IV.l0.) In each case the vector

measure Z has finite semivariation on bounded sets in a , (cf.

(6) where a is replaced by the ring generated by all bounded

Baire sets for S). If ao c a is the class of all bounded

sets (a set is bounded if it is contained in a compact set),

then it is a 8-ring, and the D-S integration of a scalar function

relative to Z:80 4 1 holds as noted above. With this under-

standing the following is the desired general result.

Theorem 2.2. Let X'R L2(P) be a process which is weakly

of class (C) in the sense of Definition 3.1, relative to a

positive definite bimeasure F of locally finite semi variation,

and a family [gs,s EJRI of strongly MT-integrable functions

2-for F. Then there exists a stochastic measure Z:8 ° 0 L2(P)

where ao  is the 6-ring of bounded Borel sets of JR , and

, is an enlargement of (n,Z,P) so L2(P)DL2(P), such that

(i) E(Z(A).Z(B)) - (Z(A),Z(B)) - F(A,B) , A,B E 8

(ii) X(t) - J' g(t,X)Z(d%) , t EIR (23)
R
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where the integral is in the D-S sense for the 6-ring a0 .

Conversely, if £X(t),t E R) is a process defined by

(23) relative to a stochastic measure Z: o6- Lg(P) and a

family (gt,t EIR}, D-S integrable for Z and s0 , then it

is weakly of class (C) relative to F defined by F(A,B) =

E(Z(A)'-*M), AB E So , and [gt,t EIR) is strongly MT-

integrable for F • Moreover, if UX = i[X(t),t E R and

Z=sptZ(A),AEB 0o in L2(P) , then X = Z when and only

when the (gt,t EIR has the property that J' ff(%)Tt(X')

F(dX,d') - 0 , t E R , implies J f(%)Y(X')F(d%,dk') = 0 both

being MT-integrals.

Proof. The basic lay out is that of [3] where the classical

integrals there will have to be replaced by the D-S and MT-

integrals appropriately. Since the changes are not immediately

obvious, the essential details are spelled out so that in sub-

sequent discussions, such arguments can be compressed.

For the direct part, let the process be weakly of class

(C) . Then its covariance r admits a representation (with

the MT-integration) as:

r(s,t) = E(X(s)X(t)) - fgs (%)Tt(')F(d%,d') (24)

Since F is a positive definite bimeasure, if L2 =
F

(f: J S f(%)f(X')F(dX,dX') = (f'f)F < , f strongly MT-integrable
IR JR

for F3 , and since IF(f'f) = (f'f)F z 0 , the earlier dis-

cussion implies [LF2,(,)F) is a semi-inner product space,

and g E LF , t E]R . Let T:LF j be defined by

T:g s - X(s) Then (24) implies
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(Tgs, = (isit)F , s,t ER . (25)

Thus T is an isometric mapping of AF 2- sp(gt,t EIR) L LF

onto U where T is extended linearly to A F from its

generators.

Suppose first that AF is dense in L F . By ([24], Thm.

11.1) every Borel function with I*(Ift,IfI) < - is in L2
F'

so that, in particular XA E L2  for each A E a0  since F

2
is locally of finite semi variation. By the density of AF

in L ,there exists an element ZA E UX such that TXA = ZA

If A,B E 8 ,then
0

E(ZA-7B) (TXA,TXB)x = (XAXB)F = F(AB) ,

and if A n B 0 0 also holds, then
E(IZAUB - AA -ZB1 2 )  (XAUB - XA - XB , XAUB - XA - XB)F =0

since F is additive in both components. Thus Z(.):B 4

it c L2(P) is additive. If (An C 00 , A = U A E o , then
n1 nECIZA - iZ A i2) E(z n  + z E A 2

U Ai  u A. i=l
i-l i>n z

= E(ZU Ai ) = F( U A i , U Ai ) 4 0

i>n i i>n i>n

as n 4 w since F is continuous at 0 from above (cf.,

discussion after (7)). This Z is a-additive on So  and

hence is a stochastic measure there. Clearly A z CX"

Since (gt, t E}R] is dense in L2F , xA E L2F , and each gt

is strongly MT-integrable for F , there is a sequence

gt- XA in L2  so that (gt- - xA)F 40 . Hence by
Fi ti-XF
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the isometry E(X ti- ZA I 2 )  0 so that [ZA,A E 8o ) is

also dense in ii Thus X = Z ,and each element in Z

corresponds uniquely to an element of LF , the completion
2 -2=0 nof LF, and where elements h E L with (h,h)F=0 and 0

are identified. Let Y(t) be defined as

Y(t) S gt(X)Z(dk) E UZ W ,X (26)

where the right side is the D-S integral on the 6-ring a .

But then

(Y(s),Y(t))= (IR gs ()Z(d%) , SR gt(%')Z(dX'))

- 5]R 5(gs X()gt ) F(d.,d')

IR IR
which holds if gs is a 8o-measurable step function and the

general case follows by([24], Thm. 3.3) since gs is strongly

MT-integrable. Thus Tgs = Y(s) E 4X" But then T being

an isometry and Tgs = X(s) , it follows that X(s) = Y(s) a.e.

So (26) implies (23) in the event that A2  is dense in
FF"2 = -2 -2 notiva

For the general case where AF  AFF LF F ~ snnrva
where "bar" again denotes completion, let tht,t E R} be a

-2

basis of AF  If W = R R is a disjoint sum to give a

new index, let is = gs for s E]R =h s  for s E R , then

=-2
(gss EIR) is dense in LF . So by the preceding case, by
extending T to T from L 4 Lo

possibly an enlargement of (O,Z,P) (cf., e.g. [32], p. 82)

with TXA = ZA E L0 (P) , since all the gs are strongly MT-integrable,
-2-

Y(s) = 5R(%)Z(dk) E L 0 (P) . (27)

Then as before Y(s) - X(s) for s EJR , and (23) holds again.
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Note that in this case 9 z ) j properly;

Conversely, let (X(t),t (1R) be a process defined by
n

(23). Let F(A,B) = (Z(A),z(B)) and gn = Z aiX Ai A3,

in .Then for the D-S integral (23) one has

n n
IFII(A,A) = sup( E T. a-97 F(A.,A.) A. E B(A), Jij :r 13

i=1 .] 1 1

n 2
s=t~ SU(I a.iZ (A. 1) 2 : 1ai l ! 1, A. E 8 (A)}

i=l 1

SIIZJI A)<-~, A E 80

Thus if X gn(%)Z(dX) , one has with hn another such

step function,

E(Xg~h gn(%)ln-(')F(ad,') .(28)

Now given g5 E L 2  which is strongly MT-integrable, by ([24],
p. 493) the "Riesz components" of g5 (i.e., g5 = re(g S)+

reg +i s~5  im(g 5 T7-)) can be approximated by suitable

Borel step functions (g I 3c LF2 such that gn4 gs pointwise

IgI 1gs1 and similarly with gn 4 such that I(g,~)-

I(g5 gd . Applying this to (28), one obtains

fg ()-(-X')F(d%,d%') = limf ~$)~XFd~2
IF g gn Id

= Jim (XX)
n gn-gin

= lim(I gn (x)Z(d%),f gn(X')Z(d%'))
n JR SIR

(I (,gs(X)Z(d), ~gt(%)Z(d%)), since

for the D-S integral the dominated

convergence holds,

=(X(s),X(t))= r(s,t). (29)
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* This shows fX(t),t E R) is of weakly class (C).

* iRegarding the last assertion, it is evident that

(gs ,s Em]R is a basis in LF iff I(f,gt) = 0 , t EIR implies

I(f,f) = 0 . This is clearly necessary and sufficient for

Z = AX since otherwise, Ewith possibly an enlargement of the

underlying probability space) N zD X and U z =Y in the

notation of (27). This completes the proof.

Remarks. 1. If F is of locally finite variation, then it

defines a locally finite (i.e. finite on compact sets) complex

2
Borel (= Radon) measure in the plane JR , and then the

MT-integrals for F reduce to the Lebesgue-Stieltjes integrals.

Thus I(gs,gs) < - is equivalent to I(Ig s,lgs1) < - and

the above result reduces to Cramer's theorem of [3]. However,

for the general case of bimeasures (as here), this is no longer

true (cf. [24], p. 497).

2. The above theorem is true if JR is replaced by a

locally compact space, since no special property of IR is

used. Only the concept of boundedness is needed.

When NFII(R × xR) < , so that F is of finite semi-

variation on , then each bounded Borel function is strongly

MT-integrable for F . Taking gt(W) = eit% in the above

theorem, one deduces from this result the important represen-

tation stated by Rozanov ([34],p. 279). The last statement

is not hard to establish.

2
Theorem 3.3 Let, XJ3R 4 LO(P) be a process such that

IIX(t)112 ! M < , t EIR , and be weakly continuous. Then the
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process is weakly harmonizable relative to some covariance

bimeasure F of finite semivariation (cf. Definition 2.2)

2iff there is a stochastic measure Z:8 4 LO (P) such that for

each A,B in a , F(A,B) - (z (A) ,Z(B)) and

X(t) = J'e i t ' z(d) , t EJR, (30)
JR

the right side symbol being the D-S integral and IIZIIOR) <

Moreover, X is strongly harmonizable iff the covariance bi-

measure F of Z in (30) is of bounded variation in JR2

(cf. Definition 2.1). In either case the harmonizable process

X is uniformly continuous, and is represented as in (30).

Suppose that in the representation (23) the Z-process is

orthogonally scattered in that (Z(A),Z(B)) = 0 whenever

A n B = . Then F(A,B) = (Z(A),Z(B)) = F(AnB) , where F

is the covariance bimeasure and F is a positive locally

finite measure on 8 so that it is a-finite there. Then

r(s,t) = E(Xs t) = I g s (%)g-tT) F(dX) . (31)

A process whose covariance function JR satisfies this con-

dition is called a Karhunen process. Moreover, if F is a

finite measure and g,(%) = eis% the resulting one is the

classical (wide sense) stationary process. In both these

cases there are no weak type extensions. An interesting anal-

ysis of Karhunen processes (with F , a finite measure) has

been given by Getoor [9] where an operator method and conditions

for existence of a shift operator (extending the stationary

case) where presented. However, the analysis of [9], together

with the example following Definition 2.1, implies that weakly
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harmonizable processes do not generally admit shift operators

on them in contrast to the stationary and many Karhunen processes.

Let us introduce a further generalization of the weak

Cram~r class to illuminate the above Definition 3.1, and for

a future analysis. Let (Q,E,p) be a measure space and M(4)

be the space of scalar 4-measurable functions on n . Let

N(-):M(p) ]R+ be a function norm in that for f'fn in M(4),

(i) N(f) - N(Ifl) z 0 , (ii) 0 :9 fn ' N(fn) t, (iii) N(af)

IaIN(f), a E C and (iv) N(f+g) < N(f) + N(g) . The functional

N has the weak Fatou property if 0  n t f, lim N(f) <n
N(f) < -,and has the Fatou property if always N(fn) t N(f)

(< ) The associate norm N' of N is defined by:

N'(f) = sup(Ij (fg)(w)p(dw)':N(g) < 1) . (32)

One sees that N' is a function norm with the Fatou property.

If N() - 1flp , I < p < - , then N'() = 11'11q , p- + q- = .

The general concept alluded to above is as follows:

Definition 3.4 (a) If r'IR x 1R 4 C is a covariance function,

it is said to be of class (C) relative to a function norm N ,

if there is a covariance bimeasure F'R x1R 4 C of locally

finite N -variation ( let N' be the associate norm of N)

and there exists a family (gt,t EIR} of Borel functions which

are MT-integrable relative to F , such that

r(s,t) - I I' g (%)g~t(')F(d%,d)X'), s,t EJR ,(33)

and where locally finite N -variation is meant the following:

a> 11FIIN (AxA) = supI I(f,g) I:N'(f) < 1, N'(g) < 1), (34)

Here f,g are Borel step functions, with supp(f)cA, supp(g) c A

A E 4 0 the 8-ring of bounded Borel sets of JR
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(b) A process X'R 4 Lo(P) is of classN(C) if its

covariance function r is of classN(C) so that it is repre-

sentable as (33).

It is clear that if N(-) = 11'111 so that N'(.)

the N -variation is simply the 1-semivariation of Definition

3.1 so that IjF1IN = 1F111(= IF!
Remark. Without further restrictions, classN(C) need not

contain the weak or strong harmonizable processes. However

if N is restricted so that, letting LN(p) = (f E M(P):N(f) <o],

L'(P) c LN(P) c L1 (P), where p - P is a probability then

every classN(C) will contain both the weak and strong harmon-

izable families, as an easy computation shows. If N() =

1I'111 , then class,(C) is the class which corresponds to the

covariance bimeasure of finite variation. This includes the

classical Loeve and Rozanov processes. Again this definition

holds, with only a notational change, if JR is replaced by

a locally compact group G . A brief discussion on some

analysis of these classes, which extend the present work, is

included at the end of the paper.
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4. V-boundedness, weak and strong harmonizability. The

definition of weak harmonizability is of interest only when

an effective characterization of it is found and when its

relations with strong harmonizability are made concrete.

These points will be clarified and answered here. Now Theorem

3.3 shows that a weakly harmonizable process is the Fourier

transform of a stochastic measure and this leads us to a fun-

damental concept called V-boundedness ('V' for "variation"),

introduced much earlier by Bochner [2], which is valid in a

more general context. This notion plays a central role in the

theory and applications of weakly harmonizable processes (and
2fields) which are shown to be V-bounded in the context of L0(P).

Further this characterization facilitates a use of the powerful

tools of Fourier analysis of vector measures. The desired

concept is as follows (cf. [2], and also [29]):

Definition 4.1 A process X'IR 4 1 , a Banach space, is

V-bounded if XQR) lies in a ball of I , X as an I-valued

function is strongly measurable (i.e., range of X is separ-

able and X I(B) E a for each Borel set B c 1) , and if the

set C is relatively weakly compact in I , where

C - fff(t)X(t)dt: IIfIIu E L ) c1 (35)

and where f(t) - flf(X)eitdX , f f(t)X(t)dt being the
IR ]R

Bochner integral. If I is reflexive then the condition on

C may be replaced by its boundedness. (Here if the measur-

ability of X is strengthened to weak continuity, then it
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actually implies the strong [and even uniform] continuity.)

Let us establish the following basic fact when I - L2p:
2Theorem 4.2 A process XJR + LO(P) is weakly harmonizable

iff X is V-bounded (i.e.,!Ix(t)1I 2  Mo< , t EIR and the

set in (35) is bounded) and weakly continuous.

Proof. For the direct part, let X be weakly continuous

and V-bounded. Then
jj f(t)X(t)dt 112 :r c 11f11u ,f E LI(R) ,(36)

by Definition 4.1. Let I - ff:f E L OR)] Co0 R), the space

of complex continuous functions vanishing at "a" the inclu-

sion holding because of the Riemann-Lebesgue lemma. Moreover,

is uniformly dense in C OR) . Let 3:f -+ I f(X)et(%)dX,

t EIR , where et(W) - eit . Then 3:LI(R) +Co(R) is a

one-to-one bounded (contractive.) operator. Consider the

mapping
T:4 4 1 - L2(P) , by r(f) - SI f(t)X(t)dt E I

This is well-defined, and the following diagram is commutative:

I. UL OR)
l(f) -S f(t)X(t)dt E I T, \., / T

I

By hypothesis T is bounded and by the density of 4 in

COR) , it has a norm preserving extension T to CoOR)

Now T will be given an integral representation using a

classical theorem due to Dunford-Schwartz ([8], VI. 7.3)

since T is a weakly compact operator because I is reflexive.

To invoke the above cited theorem, however, it should
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first be observed that the result holds even if the space

C(S) of continuous (scalar) functions on a compact space S

(for which it is proved) is replaced by C0 () with a

locally compact space 5 . Here -IR . Indeed, let 9 be

the one-point (at "-") compactification of 6 and consider

the space C(S) . Now C0 () can be identified with the

subspace (f E C(E):f(-) - 03 . Since T:Co (6) 4 1 is con-

tinuous and C (S) is an "abstract M-space", there is a con-

00tinuous operator T:C( ) -* I such that TIco(6) - T . This

follows from the fact that for any Banach space Z containing a

subspace which is an abstract M-space, there is a projection

of norm one on Z onto that subspace, by the well-known

Kelley-Nachbin-Goodner theorem (cf. e.g., [8], p. 398), and

T - T 0 Q . Hence by the Dunford-Schwartz theorem noted above,

there is a vector measure Z on 6 into I such that

Y(f) = _f(t)2(dt) , f E C(F) , (37)

and 121 = 1l(g) , the integral on the right being in the

D-S sense. Define Z:B(6) 4 1 as Z(A) - Z(WA) , A E 0(6)

Then Z is a vector measure and IIZJF 11zI1 . Moreover, if

fo = fl ' then

S(f) - 0 f(t)Z(dt) + f(-)i(dt) , f E C(F)

-T(f) , since f(-) - 0

Hence T(f) - T(f), f E Co (6) with l II11 TQ1 I i , and

i(f) - j'f(t)Z(dt) , f E Co(6) . (38)

Thus writing 3R for 6 from now on (the above general case

is needed later), it follows that TI - supO smRf(t)Z(dt)ll:
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f E C OR) , I1fHju! l -IIZliIR) - 112i1() , and T and Z

correspond to each other uniquely. Since T " T , this

implies

T(f) = f R(t)Z(dt) - f f(t)X(t)dt , f E L (R) , (39)
]R ]R

and UITI - IZjI%)

Let L E X*. Then (30) becomes (since a continuous

operator commutes with the D-S integral, cf. [8], p. 324 and

p. 153),

f (t)AoZ(dt) - f f(t)2oX(t)dt . (40)

In (40) now both are ordinary Lebesgue integrals, and hence

using the Fubini theorem (for signed measures) on the left

one has:
f f(t)dt I' et(W) oZ(dX) = Rf(t)AOX(t)dt

JR IR JR

Subtracting and using the same theorem of ([8], p. 324),

J f(t)2(f et(X)Z(dk) - X(tjdt - 0, A E *, f E L (R). (41)
JR SIR

It follows that the coefficient of f vanishes a.e., (every-

where as it is continuous). Since i E W* is arbitrary it

finally results that the quantity inside I is zero, for

each t E JR Thus

X(t) et(X)Z(d%) - eiz(dX), t E R . (42)
JR JR

Hence X is weakly harmonizable by Theorem 3.3.

For the converse, let X'R 4 L2(P) be weakly harmonizable.

Then X admits a representation of (42) by Theorem 3.3. Since

IIZIIR) < , (21) implies IX(t)112 : Mo< for all t EIR
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and as /oX(.) is the Fourier transform of zoZ,A E X, X is

weakly continuous. rinsider the Bochner integral for (fXX./as

t(f f(t)x(t)dit) -ff(t)IoX(t)dt -ff(t).J' et(%)(AoZ)(dXL)dt,
SIR SIR SIR JR(3 (43)

since toX is the Fourier transform of a

signed measure

- f . f(t)et(%)AoZ(d%)dt, by Fubini's
IR theorem,

- L (Sf f()Z(d%)) , by([8], p.324) again. (44)

JR

Since Z E X* is arbitrary, (44) implies

S f(t)X(t)dt - S f(k)Z(dX) E I . (45)
JR JR

Hence, using (21), one has

tSff(t)X(t)dt112  :5 IIjtZIl R) - cIfLIu,f E LlQ) , (46)

where c - IjZII R) < - It therefore follows that the set

(Jf(t)X(t)dt: !Iifiu -1 , f E LI(R)) c L20p),

and is bounded. Since I is reflexive, X is V-bounded.

This completes the proof.

Remarks. 1. Since V-boundedness concept is defined for

general Banach spaces (for a treatment of this case, cf.[29]),

and its Hilbert space version is equivalent to weak harmoniza-

bility, by the above theorem, the latter term will be used in

the Hilbert space context. (Using the general definition

of V-boundedness, a characterization of a process X'R 4 ,
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a reflexive space, which is a Fourier transform of a vector

measure is given in Theorem 7.2 below.)

2. The preceding proof is arranged so that if JR is

replaced by a locally compact abelian (LCA) group G , the

result and proof hold with essentially no change. The functions

[et(.),t E G} will then be group characters. Thus the result

takes care of G -JRn ; so the (weakly) harmonizable random,

fields are included. Precise statements and further results

in the general case will be given later.

If W is the set of all weakly harmonizable processes

2on IR -4 LO(P) - I , and T E B(1), the algebra of bounded linear

operators on I , then Y(t) = TX(t), t EJR defines a pro-

cess which can be written as:

Y(t) - T(f eltXZ(d)) = eitX(ToZ)(a) , (47)
JR SIR

by ([8], p.324), and it is trivial that Z = TOZ:R 4 1 is a

stochastic measure, lIZlI(R) ITIIIIZII(R) < . Hence Y E W1.

Thus one has:

Corollary 4.3 B(l).W = W , or in words, the linear space

of weakly harmonizable processes is a module over the class of

2all bounded linear transformations on I - LO(P)

Since each stationary process X is trivially strongly

(hence weakly) harmonizable, if P:1 4 1 is any orthogonal

projection, then Y - PX E W , i.e. weakly harmonizable by

Corollary 4.3. In particular if tXn,n E Z) c I is an

orthonormal sequence, 10 - _i(Xn,n > 0), let Q(1) - 10 be

the orthogonal projection and Yn QXn X if n > 0 , - 0

n n-X
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if n :r . The process (Ynn E2Z E W , but it is not

strongly harmonizable. Thus the class of weakly harmonizable

processes is strictly larger than the strongly harmonizable

class. (The latter is not a module over B(1).)

In spite of the above comment, each weakly harmonizable

process can be approximated "pointwise" by a sequence of

strongly harmonizable ones. This observation is essentially

due to Niemi [26]. The precise result is as follows:

Theorem 4.4. Let X'jR 4 L0 (P) be a weakly harmonizable process.

Then there exists a sequence of strongly harmonizable processes
2 2Xn'M -+ L2(P) such that Xn(t) 4 X(t), as n 4 , in L2(P)

uniformly (in t) on compact subsets of IR . If JR is replaced

by an LCA group G the same result holds with fXn,n E I)

being a net of such process.

Proof. By hypothesis, there is a stochastic measure Z:6 4 1

2LO(P) , such that
X(t) I f et(%)Z(dX) , t E JR

JR

Thus X'1R I X is a continuous mapping. If 3X = 9fX(t),t EJR7

C I , then the continuity of X and the separability of JR

implies 9 X is separable. Hence there exists a sequence

[pn,n 1) C )X which is a complete orthonormal (CON) basis

for UX , so that

X(t) -n M(X(t),On) t E (48)

the series converging in the (norm) topology of U X for

each t . Define
n

Xn(t) - Z Pt(X(t),cpk) , t E IR . (49)
k-l



37

Claim: (Xn(t),t E ]R,n > 1 , is the desired sequence. [In

the general LCA group case [p ,n E 13 is a net of CONn

elements of UX since G , hence UX , need not be separable.

Otherwise the same argument works with trivial modifications,]

To verify the claim, it is clear that Xn(t) 4 X(t) in

A X for each t EJR . To see that Xn is strongly harmonizable,
let 2 k:X (Xcpk) , x E N" Then Ak E U for each k

Hence using the standard properties of the D-S integral, one has

n n
Xn(t) - Cp1k(X(t)) = Z ck.k(I et(- )Z(cl)), since X is

k=l k= ]R
weakly harmonizable,

n

k= _ k - et ()Cn(dX) , (50)
n

where Cn(. ) - E qukoZ("). Let G n(A,B) = (Cn (A),C n(B))

k=l

Then G is of finite total variation. Indeed, if 4k = k°Z ,

which is a signed measure (hence has finite variation) on JR ,

let nk(A,B) = (cplk(A), cP.k k(B)) = 4k(A)1.k-B) . So Gn(AB)

Z k(A)-) . Since 14k(A)Il 1k(B)I < (14klR))2 < - for
k-l
each k , it follows that each Tk and hence Gn for each n

has finite variation so that each Xn  is strongly harmonizable.

It was already noted that X being weakly harmonizable,

it is strongly continuous. [This is true even if JR is

replaced by an LCA group G(cf. [19], p. 270).] So if Kc]R
is a compact set, then its image X(K) c A c L2(P) is also

(norm) compact. But 3X being a Hilbert space it has the

(metric) approximation property. [This means the identity on

A X can be uniformly approximated by a sequence (net) of
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(contractive) degenerate, or finite rank, operators on each

compact subset of X" ] Then Xn(t) 4 X(t) in I for each

t EIR implies, by a result in Abstract Analysis in the pre-

sence of the approximation property, that the convergence holds

in I uniformly on compact subsets of X . This and the fact

that X(K) is compact implies that Xn(t) - X(t) uniformly

for t E K CIR . In the general LCA case, the same holds with

nets replacing sequences. This completes the proof.

Remark. Even-though the weakly harmonizable process is bounded

and weakly (hence strongly here) continuous with some nice

closure properties demonstrated above, it does not exhaust

2the class of all bounded continuous functions in L2(P) This

can be seen from Theorem 3.2 by a suitable choice of a vector

measure of finite local semiyariation but which is not of

finite semi-variation. The following example demonstrates

this point. Let L IR) be identified with M(R) of regular

signed measures on R by the Radon-Nikod~m theorem (i.e.

f E L1 (R) 4--* J f(t)dt E M(R)) . Now it is known that there
()

are nontrivial functions in C0 R) - 41 where 41 = (a:4EMR).

Let f E Co0 R) - 4 . For instance f(x) = sgn(x)((loglxl) -

4[Ixj-e] + Lex Lxixi<ei), x E R, is known to be such an f

Le pE2 2 *suhta '
Let p E L0 (P) , I1cf112 = 1 . Let A E (L2(P))* such that A(cp)

= 1 . Consider the trivial process Xo:t " f(t)cp . Then

2X0" M LO(P) is bounded and continuous but not weakly harmon-

izable, since otherwise there exists a stochastic measure Z

such that (by Theorem 3.3)
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Xst) - Jet(%)Z(dX) , and

f(t) = Z(Yt) = J et(%)(IoZ)(d%)
JR

Since AOZ E M(R) , this would contradict the choice of f

Here is an interesting consequence of the preceding

theorems which is based on the classical Helly-Bray theorem.

Theorem 4.5. Let X'JR + LO(P) be a weakly harmonizable pro-

cess and let Z:8 L 2(P) be its representing measure by (30).
0

Then there is (nonuniquely) a finite regular Borel measure

$:a 41R+ such that

j iRf(t)Z(dt)112 < lle2, (-[ IR f(t)j12 (dt)] /2),f E C0 QR). (51)

Remark. Eventhough this result is included in Theorem 5.5

below, its proof is elementary and has independent interest.

So it will be given here.

Proof. By hypothesis, X(') is represented by a stochastic

measure Z (cf. (30)), and by the preceding theorem there are

strongly harmonizable Xn + X, uniformly on compact subsets

of IR. Let Cn be the representing measure of Xn , so that

C 2
n I Z:S 4 L2(P) , and

f]Rf(X)Z(da) -=lim I f(%)Cn(d%) (52)

2the limit existing in LO(P) when f is a trigonometric

polynomial. Since such polynomials are uniformly dense in

C0QR) and the integrals in (52) define bounded operators from

C0cR) into L2(P) , it follows that (52) holds for all

f E C00R) , by the standard reasoning, (cf. [8], 11.3.6).

Hence
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(if !11i f(%)z(d%) 112 = limlif f(%)Cnd) 2 QR
0 IR 2 ~n-*wJR (X)1 fECOR

=lim R f(%)f-7) Fn(d d%') 1 (53)
n-+- IR IR

where Fn(s,t) = (Cn(- ,s),Cn(- ,t)) is the covariance

function of bounded variation for each n . Let IFn I(.')

be the (Vitali) variation measure of the bimeasure Fn . Then

the hermitian property of Fn  implies, in an obvious notation,

IFnI(A,B) = IFnI(BA) . Now define a mapping sn:13  + by

the equation:

(A)= FnI(A)R) = I [IFn(AR) + IFnI (R,A)}, A E 0

so that $ n is a finite Borel measure, and

If f(%)sn(d%) = [f .rf(s).IFnI(ds,dt) +1 ff(t)IFn(ds,dt)1. (54)
IR IRR IR IR

Since Fn  is positive (semi-) definite,

0 < fR f(s)TE) Fn(ds,dt) < I If(s)Tt)HjFnI(ds,dt)
]RI R nIR~t

< }[S SlIf(s)j21FnI(ds,dt) + 5iR1Rf(t)121Fn(ds,dt)],
]RIRIR nldsdt]

since abI (Iaj 2 +Ib 2 )/2

I-S If(s)128n(dS) , by (54).

This and (53) yield

Of , 'S]f(X)Z(d)I24,.. f(X) f(%')Fn(dS, dt)
0 IR IR IRn

hei I' I f x1 2Sd)
< n R f  2 n ( d  )  , f E C0QR). (55)

Thus if af is the right side of (55), then 0 g af < af <
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for each f , and there is a subsequence Oni} such that

f lir f If(%)2$n (dX) It is to be shown that this exists

also for f = 1 Since 1 4 C0CR) , a nontrivial extension

problem intervenes, and this is resolved with a classical

trick (cf. [35], p. 32).

Let 'J be the Bohr compactification of IR . Then by

classical results (as in [35] above) each trigonometric poly-

nomial f on JR extends to a similar polynomial on JR , by

the formula
n

f(%) = Z ak(e t ,X) , X EIR
k=l 

k

where (.,) is the duality pairing of the group JR and its

dual IR , and where JR is identified with its image in Jk

[If x EJR , y Elk , then (x,y) = (y,y(x)) defines Y¥R .1

as a continuous isomorphism, and y(R) is a dense subgroup

of 1R.] The density of JR in JR implies the map f:% " f(k)

XE R , has a (uniform) norm preserving extension so that if

In is defined by in(f) --= f(%)Bn(dX) , for each trigonometric

polynomial f in C R) , then the continuous linear functional

In has a norm preserving extension In to CC) . By the Riesz

representation theorem, there is a unique regular Borel measure

8 n on IR , such that 1,n(f) - J f(%) n(dX) , f E CQR) , IAnI =
JR

n ) = Inll - *nR) It is clear that 8n is an extension

of Sn But now 1 E C(IR) , and hence gnOR) < in(l) M !Ifn =

IIenl! < , n > 1 . The inequality in (55) is unchanged if

9n  is replaced by sn ' and f E C(R) . It now follows with

f = 1 , that for some subsequence tk ,k 13 , 4(dX)
k JR k
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Hence [fnk R) k >3 is bounded, and 8 R) M < so

that (Sn ,k 2 1} is a uniformly bounded sequence of Borel
nk

measures on R . Thus by the Helly selection theorem there is

a further subsequence 8 nk such that 8 nk- 8 weakly (i.e.

in the weak-star topology) for a regular 6orel measure 8

Then by the extended Helly-Bray theorem (cf. [21], p. 181)

one has for this subsequence f2)nk , (dX) , 5 1f12 (k)8(dx)

f E Co OR) . Thus (55) becomes

III~ f (%)z(dX)II112 jf12 (%)$(aX) 12 f Ef"2 R"2,8 ' 0 R

This is (51) and the proof of the theorem is complete.

Remark. The construction of 8 shows that, it is not unique

in general. While the Bohr compactification argument is

available for LCA groups the Helly theorems and the rest of

the argument becomes more involved or inapplicable with sequences

replacing nets, and so a different argument is desirable for

general random fields. Such a method will be employed in the

next section as it has a potentialof application to all locally

compact groups, xna eve) to [4a],

The preceding theorem can be restated abstractly as follows:

Theorem 4.6. Let a be the Borel a-algebra of IR and

v:R 4 U be a vector measure where U is a Hilbert space.

Then there is a "dominating" Borel measure 8:9 4JR+ such

that

I Rf(t)v(dt) 12 <1f'12, , f E CoCR) (56)
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If I1Iv 2 (R) = sup[t!f f(t)v(dt)II: 1f112,0 13 <
JR

then v may be said to have 2-semivariation finite with

respect to some finite measure 0 , thus the above result says

that every vector measure on JR into a Hilbert space is always

of 2-semivariation finite (but not necessarikof finite variation )
relative to some finite Borel measure. The domination problem

for other Banach spaces and other base spaces (different from

R) is nontrivial, and is unsolved for most of the Banach spaces.

This question will be analyzed in more detail in the next sec-

-ion for random fields. In the following section the analog

of Theorem 4.5 will be used to prove the existence of a

"stationary dilation" for each (weakly) harmonizable random

field. Thereafter several characterizations of these processes

will be given, as they facilitate various applications and

analyses. It may be recalled for definiteness, that a random

family Xt,t E G] is a process of G is a one-dimensional

set (G c R) , and it is a field if G is a subset of a higher

dimensional group, (e.g., G c1Rn , n > 1)
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5. Domination problem for harmonizable fields and vector

measures. The work of the preceding section indicates that

the weakly harmonizable processes are included in the class

of functions which are Fourier transformations of vector

measures into Banach spaces. A characterization of such

functions, based on the V-boundedness concept of [2], has

been obtained first in [29]. For probabilistic applications

(e.g., filtering theory) the domination problem, indicated

in Theorem 4.6, should be solved. The following result illum-

inates the nature of the general problem under consideration.

Theorem 5.1. Let (n,Z) be a measurable space, I a Banach

space and v:E 4 1 be a vector measure. Then there exists a

(finite) measure 4:E 4]R+, a continuous convex function

P 'J+ JR + such that C(x./a, as x ,and v has

cp-semivariation finite relative to p in the sense that

11Im 1 (a) - sup[!JS C f (w) v(dw) 11 -: 11flop 11 i}4 r < CO ) (57)

where 1ffi - inf(a > 0:f CP(If (W)I)(dw) 1l < = , and the

integral relative to v in (57) is in the Dunford-Schwartz

sense.

Proof. Recall that v:Z -+ I is a vector measure iff it is

a-additive in the norm topology of I . Let S* be the unit

sphere of the adjoint space %* of 1. Then the above statement

is equivalent to the uniform a-additivity of the scalar

measures £x*Ov,x*E S*J . In fact, if v is strongly (i.e.

in norm) a-additive then for any disjoint sequence An E E

n 1 1 , one has
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n
0 lir IIv(i Ai) - v(A!iNini i-i

n
lir sup jx*ov( Ai) - E x*ov(Ai)l

nf4 x*ES* il i-i

so that (x*ov,x*ES*} is uniformly a-additive. On the other

hand if v is weakly a-additive (i.e. the scalar function

x*ov on the a-algebra Z is a-additive for each x* E S*),

then by a classical theorem of Pettis (cf. (8], IV. 10.1),

v is strongly a-additive. Thus weak o-additivity and the

above stated uniform a-additivity are equivalent. Now by

another classical result due to Bartle-Dunford-Schwartz (cf.

[8], IV. 10.5) there exists at least one "control measure"

P:Z -+k+ such that x*ov is p-continuous for all x* E S*

Hence if g d (the Radon-Nikod~m derivative), then

by the first part on uniformity, one has lim I gx,(w)4(dw) -
4(A)40 A

lir [xov(A)1=0, uniformly in x* E S* Hence(A) -0

(gx*:X* E S*3 c LI(D,Z,4) and it is a uniformly integrable

set, by the well-known Dunford-Pettis theorem, ([8], IV. 8.11).

Since (f) < - , by a (1915) theorem of de la Vallee Poussin

(same argument as in [32], p. 65) there exists a continuous

convex function 14M+ 4]R+  such that t(s) as x ,x

and J *(tgx,(uj)j)(dw) < M < all x* E S* . Such a 1' is

called a Young function, and this statement is equivalent to

saying that fgx* , x* E S*} lies in a ball of the Orlicz

space L*(p) . (For the rudiments of Orlicz spaces one may

consult (41], p. 173.)
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Let cp:+- R+ be defined as: p(x) - sup(jxly - *(y):y >0

Then it is easily seen that cp is also a continuous convex

function with P to) on x ' and p is called the comple-xmentary Young function. Considering the L((p) , by the

Hlder inequality for these spaces (cf. [41], p. 175),

it results that

lviP(Q) - supIlJ 0f(w)v(dw)Ij: lfl1*',1  1)

M sup(sup[ iJ' (f,gx*)(w) p(dw)i:x*ES*]:ljfIL1,5 i

<2supsup[Ilf1I ,,IIgx, *I'! : x*E S*] :l1filr 1< , by
H61der' s ineqwaliky,

52supjjlgxj P1 :x* E S*} 2Ko <

where Ko  is the radius of the ball containing the set

(gx*' x* E S*3 . So (57) is true, and this completes the proof.

Remark. If I is a Hilbert space, (n,Z) = (R,R) , then

Theorem 4.6 shows that cp(x) _ jx12 and 4 - s there. But

lvill ( n) (=jvjiI(n)) < - always, by ([8], IV. 10.2) . Since on

a finite measure space Lw(4) c LP(4) c L (4) , for any contin-

uous Young function (the first inclusion is obvious, and the

second follows from the support line property), it is easily

seen that 1lvil, (n) < cIjvl 1(n) < - , and the inequality can be

strict so that the above result is an improvement on previously

known ones. However, p may grow faster than a polynomial.

Thus Theorem 4.6 and 5.1 imply that cp depends on the space I

An interesting and nontrivial problem is to classify Banach

spaces for given cp-functions such as p(x) - IxIp , p z 1
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The general case is largely unexplored. Some interesting

special problems are considered in the rest of this section.

It will be convenient to introduce a definition and to

state a fundamental result of Grothendieck and Pietsch, for

* the work below.

Definition 5.2 Let 1,4 be a pair of Banach spaces andas

usual, B(1,4) be the space of bounded linear operators on

I into 14. If < p<, T E B(1,4), then T is called

p-absolutely summing if a p(T) < - where
n n

ap(T) - inf[c > O:[ Z iTxiliJP]/P'c jup ( Zx*(xi)IP)P
P i=l I - (58)

xi E 1, 1 i < n , n 
( 58

where x* E 1* , the adjoint space of I

The following result of Grothendieck-Pietsch with a

short proof may be found in [201 together with some extensions

and applications.

Proposition 5.3. Let T E B(1,4) be p-absolutely summing

1 s p < - . Let K* be the weak-star closure of the set of

extreme points of the unit ball U* of T* . Then there is

a regular Borel probability measure u on the compact space

K* such that

IITXl 14 ! a p (T) [K Ix*(x)IP4(dx*)]l/P, x E 1 . (59)

Conversely (and this is simple), j& T satisfies (59) for some

jL on K* with a constant Yo , then T is p-absolutely

summing and a p(T) < Y0 . Further any p-absolutely summing

operator is weakly compact.
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Let us specialize this result in the case that I -

Cr(S)[C(S)] , the space of real [complex] continuous functions

on a compact set S • Let K be the set of all extreme points

of the unit ball U* of (Cr(S))* and q:S 4 (Cr(S))* be

the mapping defined by q(s) - is with s(f) - f(s)

f E Cr(S) so that s is the evaluation functional, Il1isl 1,

and Ls E K , s E S Some other known results needed from

Linear Analysis, in the form used here, are as follows. (For

details, see [4], Sec. V.3; [8], p. 441.) In this case the

spaces S and q(S) are homeomorphic and q(S) is closed

since S is compact. By Mil'man's theorem U* is the weak-

star closed convex hull of q(S) U (-q(S)) , and (by the com-

pactness of S again) it is the extreme point-set of U* and

is closed. Further these are of the form ais , s E S and

jal= I , (cf. [8], V.8.6). Consequently (59) becomes

JjTfjjp  (a (p (r)PIq)(S)p  j Is (f)P p (di s) f E C r(S )
P q(S)U(-q(S))

2 (a p (T))P.q(S)11s(f)jPp(d~s) )

= 2(a (T))P- If(s) IPp(ds), if S and q(S) are
pS (as they can be) identified.

For the complex case, C(S) = Cr (S) + iC r(S), and so the same

holds if the constants are doubled. Thus

ITflI 1  C p[ jf(s) IP4(ds)] p = C pjfip1 , f E C(S) , (60)

where CP = 4[a (T)]P • This form of (59) will be utilized
p p

below.
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Definition 5.4 Let I be a Banach space, 1 p and

1 ! X < Then I is called an £pX-space if for each

finite dimensional space E c F C I , I s n < , such that

d(F',n) ~. Xwhere An is the n-dimensional sequence space
p pwih th =-

with p-- power norm and where d(EI,E 2 ) infIjTj1T lII:-1 1:

T E B(E1,E 2 )1 for any pair of normed linear spaces EIE 2

A Banach space I is an £-space if it is an £p%-space

for some X I .

It is known (and easy to verify) that each LP(4),p 2 1,

is an £p,%-space for every X > I , and C(S) [indeed each

abstract (M)-spacel is an Z A -space for c.very X > I

The class of £2 -spaces coincides with the class of Banach

spaces isomorphic to a Hilbert space. For proofs and more

om these ideas the reader is referred to the article of

Lind~trauss and Pelczynski [20].

With this set up the following general result can be

established at this time on the domination ;zoblem for vector

measures.

Theorem 5.5. Let S be a locally compact space and C o(S)

be the Banach space of continuous scalar functions on S

vanishing at '-' . If 14 is an £P-space, 1 ! p - 2 , and

T E B(C o(S), ) , then there exist a finite positive Borel

measure 4 on S ,and a vector measure Z on S into 14,

such that

!IS sf(s)Z(ds)ll = Tf1 f2, , f E COW (61)

14J'2~ 0S
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Proof. Since I C 0o(S) is an abstract (M)-space, it is

an £ -space by the preceding remarks. But is an £ -space
p

1 - p 2, and so T E B(1,4) is 2-absolutely summing by

([201, Thm. 4.3), and therefore (cf. Prop. 5.3 above) it is

also weakly compact. By the argument presented for (37), (38)

above, one can use the theorem ([81,VI.7.3) even when S is

locally compact (and noncompact) to conclude that there is a

vector measure Z on the Borel a-ring of S into such

that

Tf j f(s)Z(ds) , (D-S integral)
S

Using the argument of (37), if S is the one point compacti-

fication of S , and T E B(C(S),4) is the norm preserving

extension, then T is 2-absolutely summing (since C(S) is

an abstract (M)-space ), and weakly compact. So by (60) there

exists a finite Borel measure u on S such that

!1Tf!1 c IV f - , f E C(S)

Letting 4 = ci ,one has 1iTfil 1 12,7 3, f E C(S) . So

(61) holds on S . Let Ta&) = (Sn.) so that P is a finite

Borel measure on S If now one restricts to Co(S) identi-

fied as a subset of C(S), so that T = TICo(S) , it follows

from the preceding analysis that ! Tf' 1 112,4 for all

f E Co(S) . Since the integral representation of T is evi-

dently true, this establishes (61), and completes the proof

of the theorem.

If 4 is a Hilbert space, it is an £2 -space so that

the above theorem includes the result of Theorem 4.5. However,
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that special case did not depend on any results of [201. But

the general case needs all this machineryl

The following statement is actually a consequence of the

above result, and it will be used in the last section:

Proposition 5.6. Let (0,E) be any measurable space, and

I = B(Q,Z) be the Banach space (under uniform norm) of scalar

measurable functions. If is an Zp-space , 1 s p < 2

as above, T E B(1,4) is such that for each fn E I , fn - f

pointwise boundedly implies 11Tfn I 4 ITf1 , then there exist

a-additive functions Z:E - 1 , -:E 41R+ , such that

f f(w)Z(dw)U = Ir fl!2,, t E 1 . (62)

Proof. First a reduction of the hypothesis to that of the

preceding theorem will be made through use of a basic isomor-

phism result (cf., [81, IV 6.18), and then with standard measure

theory manipulations (62) will be established. These are not

difficult, but need care. Here are the details.

Since I = B(n,Z) is a closed subalgebra of B(n)

(= B(Q,2 )) , it follows by ([8], IV. 6.18) that there is a

compact Hausdorff space S and an isometric algebraic isomor-

phism I between the algebra I and I1 = C(S) which takes

real functions into real functions preserving order and complex

conjugate functions into complex conjugate functions. Let

T - T - 11 - 1 . Then T E B(I,4) and is 2-absolutely

summing. Hence by the preceding theorem there is a regular

Borel measure u,, on S into IR+, such that 'TTf"''

If1 2 , f C II . But f E I implies f = I(f) E I so that
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':ITf = i!f 11f l2,f f E . (63)

To simplify the right side, consider2
f ,ff'l since 41 E C(S)* (-,) being the duality

-- (l(f)l(), 1 l> = Kl(ff) 1), I being algebraic

and conjugate preserving,
fI*( )  I** * e

a:I - is~adjoint of I,

-- If2(w)k2 ( d w) with 42 = I*([uI) E X* = ba(n,Z). (64)

In the last line, 42 is a bounded additive function on Z

and the integral relative to such P2 is defined in the

standard manner (cf. [8], 111.2). Letting Z(A) = TXA , A E 7-

it follows that Z:Z 4 14 is additive and for each step function
n

f(=il aiXAi, AiE Z , disjoint) one has
i=l i 

fw11f4 U I f) 2 2(dw)]I/2,by (63)-(64). (65)f( )Z (dv) 11 :f

Now one can use a definition of the integral for finitely

additive Z to conclude that (65) holds for all f E I so

that (65) reduces to (62) if u-additivity is replaced by

finite additivity. However, the additional hypothesis on T

namely, its bounded sequential continuity, allows us to con-

clude that Z is a-additive since f = XAn, An \ 0 implies

the left side of (65) tends to zero. Then by the D-S integration

theory ([8], IV.10.10) the left side holds for all f E I

Thus

f(w)Z(dw)W 21 f (u)12 (66)

11 2 (') I E
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To replace P2  by a a-additive function, let P be

the Carath6odory generated measure by the pair (Z,2)

If Z is the class of p-sets , then the classical real

analysis methods imply (cf. e g., [36], p. 67) u on is

a-additive, Z D E and (i is 2iff P2  is a-additive)

"(A) ± 42 (A) , A E E It is now asserted that (66) holds if

U 2  is replaced by 4 , Z being a-additive. Since step

functions are uniformly dense in I , it suffices to prove

(66) with Z," for all step functions f This is accomp] shed

with a simple direct computation as follows.
m

Let f = ai Ai E By the finiteness of 2
= i 

2

and the definition of p , given c > 0 , there exist Ain E E

such that A. c U A. and
n=l in

CO

+aia = 7 s (a i  0 may be issumed ). (67)
Jaij2m n1I in) (.

Replacing AE by A. n Ai(EZ) , it may also be assumed thatin in

Ai = U Ain here. Hence if fN = a i then
n~l i-1 U A ik

k=l

fNe E I and fc 4 f pointwise and boundedly. Thus (66) becomes
N N

21rfN £ m N

Tf '12= I f / 1 2 m 12 2(

N - P .p 2(dw) = i ai U An)m N

ai1 2 N
i 1 nJa -  n ) , since 0 s u is additive.

i=l n11(i

Letting N - and using the bounded sequential continuity

of T , one has with ([8], IV.10.10)
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'ITf!' = Ja f([)Z(du)L! Iai 2 (Ai) + m , by (67),' i~l lai 2

f f( I)2 p(dw) +

Since e > 0 is arbitrary, this implies (62) for any step

function f and thus (as noted above) for all f in I

This completes the proof.

Remarks. 1. The preceding results show that the domination problem

for vector measures in LP-spaces, 1 ! p ! 2 , is solved and

hence also for harmonizable fields since only the £2 -type

spaces are involved in the latter. However, for p > 2 , such

a satisfactory solution of the problem is not available.

2. The isomorphism mapping I of the above proof,

with ((8], IV. 6.18), is very handy and plays a key role in

other parts of stochastic analysis. Another such appli-

cation may be found in ([32], p. 130ff).



55

6. Stationary dilations. The results of the last section

play a key role in showing that each weakly harmonizable random

field has a stationary dilation. It is a consequence of the

2
preceding work that for -ati stationary field Y:G 4 LO(P)

with G an LCA group, and each orthogonal projection

Q:L2(P) 4 L2(P) , the new random field X(g) = QY(g), g E G

42giving X:G + L0 (P), is seen to be weakly harmonizable. The

dilation result yields the reverse implication. A "concrete"

version of this is given by the following theorem and an "oper-

ator" version will be obtained later from it.
2

Theorem 6.1 Let G be an LCA group, X:G 4 Lo(P) = 4 a weakly

harmonizable random field. Then there is a super (or extension)

Hilbert space H D H , a probability measure space ,

with = L (P) and a stationary random field Y:G 4L(P)

such that X(g) QY(g), g E G , where Q:LO(P) 4 LO(P) is

2the orthogonal projection with range LO(P) If moreover,

=4 EX(g),g EG , then Y determines X in the sense that

= 9pY(g), g E G} . [Thus H is the minimal super space for 3.]

Proof. The remark has the following easy proof. In fact, if

42
Y:G 4 LO(P) is stationary, then Theorem 3.3 inplies

Y(g) = 1.(g,s)Z(ds) , g E G , (68)
G

A 2for a vector measure Z on G into X = L0 (P'), with ortho-

gonal increments (also called orthogonally scattered) where

G is the dual group of the LCA group G , and (-,s is a

character of G .If Q:H 4 X is any orthogonal projection,

then Z = QOZ is a stochastic measure on G into X
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Indeed,

l(G) = sup i Z1i)1 , Aic G disjoint Borel,

- sup[!IQ ia.Z(A 2 jail <  1, G , as above)

SfQfl2sup(I1 2 aZ(Ai ) 112: Ja i I< 1, Aic G, as before3
i=l

12 Pn '
- IQisup! aa F(AiA):il , Aic G as beforeli=lj =1 1 3

where F(ANA) = (Z(A),Z(A

SBQ!1 2IFI (G) < F(G) < -

since F is the spectral measure of Z and so is finite and

Q is a contraction. Hence 2 has finite semivariation and

is clearly a-additive, so that it is a stochastic measure.

By Theorem 3.3 , X given by X(g) = QY(g) = I&(g,s)Z(ds),
G

g E G , is weakly harmonizable. (Note that the same conclusion

holds if Q is replaced by any bounded linear operator on H

If the range of the projection Q is not finite dimensional,

then X need not be strongly harmonizable')

To go in the reverse direction, the (possibly) augmented

2space X : 9 has to be constructed. Consider X:G 4 N = L2(P)

the given weakly harmonizable random field. In order to get

simultaneously the additional structure demanded in the last

part, let 9 = {(X(g),g E G1 also. Then, as before, there

is a stochastic measure on G into U such that

X(g) = 1,(g,s)Z(ds) E A , g E G (69)
G

By Theorem 5.5, with 1 = 4 , there exists a finite Radon

(- regular Borel) measure 4 on G such that
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Gf af(t)Z(dt)fl2 < f^If(t) 12 .(dt) , f E Co(G) (70)
G CG

Next define a mapping v:f(GxG) -+]R+  by the equation

v(A,B) = p(AnB), A,B E 9(G) ,(71)

where S(G) is the Borel a-ring of G and similarly B(GxG).

Then v is a bimeasure of finite Vitali variation on 8(G) x

8(G) and since this ring generates 8(GxG) , v extends to a

Radon measure on the latter a-ring. Moreover, it is clear

that v concentrates on the diagonal of the product space

x b . If Cb(G) denotes the Banach space of bounded contin-

uous scalar functions on G with uniform norm, then

1^'f(s,t) v(ds,dt) = .^f(s,s)p(ds), f E Cb(GXG) (72)
GG 

G

Let F(A,B) = (Z(A),Z(B)) so that F: 3(&x&) -* T is a bi-

measure of finite semi variation, from (69). Thus using the

D-S and MT-integration techniques as before,
0:< (!f^f(s)Z(ds)12 S f(s)TTE)F(ds,dt), f E Cb(G) (73)

.G 2 GGG

Letting f(s,t) = f(s).f(t) in (72), a = v - F one has from

(70) - (73),

0 fSlf(s)12(ds) -!^f(s)Z(ds)i 2 = J^A^f(s)T t)[v(ds,dtl
GG G G - F(ds,dt)]

- JUf(s)(t) 'a(ds,dt), f E Cb(G) (74)

So a is positive semi-definite and a = 0 iff v = F , i.e.,

if F concentrates on the diagonal. This corresponds to X

being staionary itself, Excluding this trivial case, a 0 0

and (74) is strictly positive, if f -- 1 It follows from (74)

k _-gaud
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that [C,' (G) × Cb(G) 4 C defines a nontrivial semi-

inner product, where

[f,g]' = f^f^f(s)gt) a(ds,dt), f,g E Cb(G)
GG

If r0 = (f:[ff'] = 0 , f E Cb(G)J , and Al = Cb(G)/ho is

the factor space, let [X'': i HI 4 1 be defined by

[(f),(g)] = [f,g]' , f E (f) E Ul' g E (g) E 91 (75)

Then [,.] is an inner product on 91 and one lets A. be

its completion in [,.]. Let r0:Cb(G) - go be the canonical

projection. Thus 90 is nontrivial and need not be separable.

Now let us replace H0 by L0(P') on a probability space

(O',E',P') .This can be done based on the Fubini-Jessen

theorem where P' can even be taken to be a Gaussian measure

(for the real 9 , see [32], pp. 414-415). The complex case

is similar. A quick outline can be given: Let {hii E I) c H0

be a CON set. If (ni,i,Pi) is a probability space determined

by a standard Gaussian variable, so that one can take 0i a:
2

E = Borel a-algebra of I , and Pi(A) = (27) - 1/ 2 .' exp(-I4.dtldt2
A

A E 7 ' (t = tl-t 2) , let ( Z',E',P') = 9 (ni'7i'Pi) the
11 2 iEP ' 1

product space given by the Fubini-Jessen theorem. If Xi(W) -

I1
w(i) = w(i) , ui E T ,' = a the coordinate function, then

E(Xi) = 0 and E(IXi12 ) - . Also {Xi,i E I) forms a CON

basis in (P') . The correspondence T:h i 4 Xi , extended

linearly, sets up an isomorphism of 90 onto L (P') , and

'i(hi) 12 = E(iXi 2 ) = 1 [hi,h i ] , i E I Then by polarization

one has [hi,h.] - E(T(hi)T-ET)) , so that T is an isometric

2isomorphism of 90 onto L2 (P')
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If TT T orr 0 :f k+ T( 0(f)) E L2(p') = 1', f E Cb(G)

is the composite (canonical) mapping, let Xl(t) = 1(et(.)) E U'

i wwhere e t:s " (t,s) , is a character of G at t E G

Note that e0 = 1 4 n0 , so r0 (l) can be identified with

the constant 1 E CD(G). Thus - T(l), E(IT(l) 12) = 1

Let " ='[(Xl(t),tEG}CU'. Then there exists a probability

space (2"as above, such that 34" = L2 (P") . Finally

2
set X = V " , the direct sum of Hilbert spaces L2(P) and

L (P") If (2,E,p) - (n,Z,P) ® (n",E",P") then one can

2-
identify, in a natural way, R = L2(P) . Define Y(t) = X(t)

+ Xl(t), t E G , so that (X(t),Xl(t)) = 0 since U z- 9"

in R. Then [Y(t), t . G} c X = L2(P) , and if Q:X 4 U =

[US(033 is the orthogo-Aal projection, one has X(t) = QY(t),

t E G . It remains to show that Y:G 4 L2(P) is stationary.

By construction Y(O) - X(O) + XI(0) and this is X(0) only

when X1 (0) = 0 which can happen iff 9" (0 )0 , i.e. when

no enlargement is needed.

To verify stationarity, consider

r(s,t) = (Y(s),Y(t)) = (X(s),X(t)) + (Xl(s),Xl(t)) since X - XI,

G G G'G

by (73) and (75) and these are MT-integrals,

= J' f(s,%)(T,-) v(d%,d%') , since a = v - F
G G

-J'(s,)(t--E,) 4(d%) , by (72),
G

= P^(s-t,)) "(d%) , by the composition of characters.
G (76)
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Since . is a finite positive measure, (76) implies

r(s+ht+h) = r(s,t) = i(s-t), and so the Y:G + L2(P) is

stationary. The construction also implies that !Y(t),t E G}=K

in the case that 9 = 9{X(t),t E GI This completes the proof.

The following is a useful deduction:

Corollary 6.2 Every vector measure v:B(G) 4 9 where G is

an LCA group, R(G) being its Borel algebra, and 9 is a

Hilbert space, has an orthogonally scattered dilation.

Proof. Since G = G consider the mapping X:G 4 N defined

as the D-S integral X(g) g,%) v(d%) . Then X is

V-bounded; so it is weakly harmonizable. By the above theorem

there are an extension Hilbert space X D 9 , an orthogonal

projection Q:X 4 K , with range 9 , and a stationary field

Y:G -+ H such that X(g) QY(g) . Let Z be the stochastic

measure representing Y , (cf. Theorem 3.3). Hence for each

h E 9 one has (Z:O(G) 4)

(g,%)(v(d%),h) = (X(g),h) = (QY(g),h) = fA(g,%)(QoZ (d%),h).
G G

These are now scalar (Lebesgue-Stieltjes) integrals. By the

classical uniqueness theorem of Fourier analysis for such

integrals, one has (v(A)-QoZ(A),h) - 0 A E S(G),h E N Hence

v = QoZ . Since Z is orthogonally scattered by virtue of

the fact that Y is stationary, the result follows.

With the last theorem, a more perspicuous version of

the dilation problem for a weakly harmonizable random field can

be given. This, however, depends also on an interesting theorem

of SZ.-Nagy [371 and wil be presented. Recall from the classical
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theory of stationary processes ([61, p. 512 and p. 638) every

2such process (Yt,t E } c LO(P) , can be expressed as Yt=

UtX0 , where [Ut,t E R} is a group of unitary operators

acting on L2(P) (first on [Yt,t E IR and then for instance,

define each U as an identity on the orthogonal comple-

ment of this subspace). The spectral theory of U then yields

immediately the corresponding integral representation of Y s

The same result holds if IR is replaced by an LCA group G

The corresponding operator representation for harmonizable pro-

cesses (or fields) is not so simple. Its solution will be

presented in the following theorem. Recall that a family

T:G + B(I), I a Hilbert space, is positive definite , if

T(-g) = T(g) .and for each finite set xsl ... ,xsn of

elements of I indexed by J (Sl'S2' ...,Sn) c G , one has

n n -I
E (T(s ) 0

i=lj =1 I si

Theorem 6.3 Let G be an LCA group and X:G 4 L2(P) I.

a Hilbert space, be weakly harmonizable. Then there exists a

super Hilbert space K = LO(P) : I on an enlarged probability

space (0,E,P) , a random variable Y E K a weakly continuous

family (T(g),g E G] of contractive linear operators from

X to I with T(O) as the identity on 1 (0 being the nutral

element of G) , such that, when its domain is restricted to

it is positive definite, in terms of which X(g) = T(g)Yog E G

Conversely every weakly continuous contractive family [T(g),g E G}

of the above type from any super Hilbert space K : 11A 4hich
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when restricted to I is positive definite, defines a weakly

harmonizable process X:G -+ I , by the equation X(g) T(g)Y0

for any Y0 E.

Proof. The direct part is an operator-theoretic reformulation

of Theorem 6.1. Briefly, let X:G 4 L02(P) = I be weakly

2-harmonizable. Then there levist, a H = LO(P) D I and a sta-

tionary Y:G 4 K such that X(g) = QY(g),g E G , by Theorem 6.1

where Q is the orthogonal projection on H with range I

But Y(g) = U(g)Y(O) where (U(g),g E G) is a (strongly)

continuous group of unitary operators on i .. Let T(g) -

QU(g),g E G . It is asserted that (T(g),g E G3 is the

desired family.

Indeed, T(O) = Q (= identity on 1), and 1IT(g)1! 1'Q!1 1U(g)!1-l.

The continuity of U(g) on G clearly implies the weak con-

tinuity of T(g)'s. To verify the positive definiteness on I

let hsl ... ,h be a finite set in I Then letting T(g)

T(g)J, one has T(-g) - (T(g)) since

(T(-g)h ss) (QU(-g)h sl,h ) = (U*(g)h s,Qi )

= (h ,U(g)h ), since Qhs. = hs and U**(g) =

u(g) ,

- (QhslU(g)hs) - (hslQU(g)hsi)

= (hs ,T(g)h ((g)*h 3h )all h El ,
S s2 si s si

i - 1,2

Similarly,
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n n n nE Z (T(s )ih~~ 7- 7 (QU(-sj)U(si)hsi

i=lj = i j i=lj =I

n n
E E (U(s YrU(s.)hs ,h)

i=lj =1 J i

n~ 2i E IU(s i)h siI2 > 0

The converse depends explicitly on an important theorem

of Sz.-Nagy ([37], Thm. III; see also [381, p. 25 for a stream-

lined proof). According to this result if T(-) = T(-)I,

then there is a super Hilbert space Xi D I (XI may be quite

different from K ) and a weakly (hence strongly) continuous

group [V(g),g E G) of unitary operators on K such that

T(g) QlV(g)I1 , Q, being the orthogonal projection of X,

onto X Here K can be chosen as X, = - (V(g)l ,g E G)

If x0 E I is arbitrary, then x0 E R, n{ , and T(g)x0 -

T(g)x0 = Qf(g)x0 = X(g) , say, g E G Then [Y(g) = V(g)x0 ,gEGI

c X1 is a stationary process so that by the first paragraph

of the proof of Theorem 6.1, [X(g),g E GJ c I is weakly har-

monizable. Thus for each x0 E I , (T(g)xo,g E G} is weakly

harmonizable, and this completes the proof.

Remark. In the converse direction one can take K = I However

in the forward direction, it is not always possible to take

YO in I , so that X(0) = Y, , as the example following

Definition 2.1 shows. Thus there is an inherent asymmetry

in the statement of this theorem, and the mention of the super

Hilbert space X in the enunciation cannot be avoided. This

does not simplify even for strongly harmonizable fields!

(Compare with [I].)
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7. Characterizations of weak harmonizability. In this

section a different type of characterization, based on the

V-boundedness concept crucially, of weak harmonizability as

well as a comprehensive statement embodying all the other

equivalences of this concept are given. The comparison will

illuminate the structure of this general class of processes.

However, it is interesting and useful to obtain a characteri-

zation of V-boundedness for a general Banach space, and then

specialize the result for the harmonizable case.

In this context let us say that X:G - I , a Banach space,

is a generalized (or vector) Fourier transform if G is an

LCA group, and if there is a vector measure v:S(G) - I such

that X(g) = J,(g,s>v(ds),g E G In [29], Phillips has
G

extended the fundamental scalar result of Bochner's V-boundedness

to certain Banach spaces with G = . Later but apparently

independently, the LCA group case was given by Kluvanek in

([19], p. 269). In the present terminology this can be stated

as follows:

Proposition 7.1 Let G be an LCA group and I a Banach space.

Then a mapping X:G 4 1 is a generalized Fourier transform

of a regular vector measure v:R(G) 4 1 (i.e. for given

, > 0 and E E e(G), there exist an open set 0 and a compact

set C with O D E D C such that for each F CO - C,

F E R(G) one has 11v(F)1l < c) iff X is weakly continuous

and V-bounded (in the sense of Definition 4.1).
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On the other hand, when I = U , a different kind of

characterization was given by Helson [12]. A vector extension

of this is used for the weak harmonizability problem, and

will be presented here. Let Lk(G) be the Lebesgue space

on G relative to an Haar measure, denoted dg. Similarly

Lk (G) is defined on the dual group G , and L(G) for

I-valued function space. Let LI(G) = (f:f(t) = ( Kt,s) f(s)ds,

1^ G
f E LI(G)j and a similar definition for I , the integrals

in the latter being in the sense of Bochner.

The following result contains the desired extension:

Theorem 7.2 Let G be an LCA group, I a reflexive Banach

1
space, and X:G - L,(G) be a mapping. Then X is a generalized

Fourier transform of a vector measure v on G into I iff

for each p G (G) the mapping Yp = (Xp):G - L1 (G) = Ll(G)

is well defined, i.e., iff L is a module over

Proof. Suppose X is a generalized Fourier transform of v

on G to I , so that

X(g) = :^Kg,s)v(ds) , g E G (77)
G

By hypothesis p E l(C) so that p = f for a unique f E L(C).

Hence X(g)p(g) is well-defined, and if I E I* , then by the

scalar theory one has

I(X(g)'p(g)) = p(g)t(X(g)) = r<g,s)f(s)ds ' <g,teov(dt)
G G

K^<g,s)(Lov * f)ds, since (pov*f) = (ov) .f
G

the "*" denoting convolution,

^g,sk (s)ds , (78)
G
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where k, = Aov , f E LI(G) by the classical theory (cf. [35],

Thm. 1.3.5 (a)). Also k H)(s):* 1 E is additive, and

il fI sI- nI Hence

Ik(s) -+ 0 as 1 - 0 for a.a.(s), so that kA(s) = k(s)(;)

for a k(s) E **= I by reflexivity, and for a.a.(s)

Thus k(.) is Pettis integrable on G , and the mapping

Zp(.):A - Ak(s)ds, defines a o-additive bounded set function

into I , a vector measure, by known results in Abstract Analysis.

Consequently,

tM(X(g)).p(g) = '" g,s) IOZ (ds)
G p

= ('(g,s)Z (ds)) , A E X* (79)
G P

Since Zp is a vector measure, '1Z p!!G) < , and ; E I* is

arbitrary, one has

Y p(g) = (X.p)(g) = (g,s)z p(ds) E I , g E G , (E0)
G

to be well-defined. Also IYp(2)11 = Ip(g)IIX(g)jI f
1 1IX(g) l

so that -I and by (80) Y is the Fourier

transform of the vector measure Z on G into I . Hence

Yp E LI(G) This proves the direct part. The sufficiency

is slightly more involved.

Thus, for sufficiency, let Xp = Y E £i(b) for eachp I
P -i(G) Since I is reflexive, by Proposition 7.1, it is

enough to establish that the (weakly continuous) X is

V-bounded (cf., Definition 4.1). This is accomplished in two

stages.

Let us first define an operator 7:LI(G) - LI(G) by the

equation:
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7f)= p X --Y , p = , f E LI( ) (81)

Then (Tf) ^ E I(6) by hypothesis for each f E L(G)

Clearly T is linear. It is also bounded. To see this, let

us show that it is closed so that the desired assertion follows

by the closed graph theorem. So let f nf E LI(6) fn 4 f

in norm, and hn = Tf n - h in LI(b) . Then (cf., [19], p. 268)
U "

- ~ ~ f 11,~ll -+ 0 and fh ~ ~ u I hn- 1 n_ Iu 1h n h11l-+
as n - . But then

hn (Tfn ) = X4 4 h and fn f , uniformly.
n n n n

'tXf-hl(s) ' 'X(fn-f)! 1 (s) + IXfn-fl(s)
"~X(s) Ifn-I (s) + 'lh-hl(s) - 0 , as n 4 ,s E G.

Hence Xf h = (Tf)^ , and Tf = h (by uniqueness). So T

is closed.

Next let us verify the key property of V-boundedness for

X Since Y is continuous for each p E tI(t) , it follows

that X is weakly continuous. Let h E LI(G) Consider

the operator T:L 1 (G) 4 I defined by

T(h) = r = X(g)h(g)dg , 1 i (82)
G

Since the correspondence h * h is 1-1, T is well-defined

on (G) , and it is to be shown that T:L (G) 4 1 is bounded

when the former is endowed with the uniform norm.

Let {e ,a E I! c L (G) be an approximate unit (cf.,a
(351, p. 6) so that 'e, i , e 0 and e -e

a a
as a,-" / 'r' Now (Te) ^ = X.e (=X , say). The hypothesis

implies X a E LI and
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fl~~X~~t)= (T(e -e,) 7'(i(e,-e_,)

aa~

since Tr was shown to be bounded. Thus Xa -+ X uniformly.

Since Iu , the operator TaL defined below is bounded:

T CL(h) = 1,Xa (t)h(t)dt, h E L1(84)

But X is the uniform limit of X a 's so it is also bounded,

and hence T of (82) is bounded. Moreover,

!IT(h) -Ta (h)!1 1 1J-x-0 )(t)htdll

I1X-XaIlu- jG h(t)Idt -4 0 , by (83)

as a '' .Hence !IT CL(h)1j -+ 'IT(h)fl , and

T(h) =lim J-X (t)h(t)dt (= 1J-x(t)h(t)dt) .(85)

a G aG

If I E X:,(85) implies

(1-oT)(11) = lrn fj1(X(t))h(t)dt (= lim(vgT )(h))
aL G a a

On the other hand,

(ioT a)(h) = 1,,,e (X a(t))h( t)dt = J j4( (7e )) 1-(t) dt
G aG

= fjh(t).-g.(j g, t)(Te )(g)dg)dt
GG

=Jii(t){g't)dt J(TCe a)(g)dg , by Fubini's theorem,

=fI(Te )(g)h(g)dg , by Fubini again
a

Thus

(A (iTa )(h) I 1$h''I('e)" !I A 1 .Ie a,1 (86)

Taking suprema on 1 , and noting that le a =1 1, (86)

implies

ITa (h ' 'h'u T!( 7
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Thus (85) and (87) yield that "T(h) " c.!h, with c =U

S< - So X is V-bounded. Since I is reflexive,

Proposition 7.1 now applies and yields (77) for a unique

vector measure v on G into I This completes the proof.

Remarks.l. Since G is not necessarily compact, p = 1 in

Y is not necessarily possible; so that the result of theP

theorem cannot be trivialized.

2. The necessity proof also holds (and thus the

theorem) if Li(6) is replaced by f(G) = (I":U(t) =

f (g,t)(dg), 4 E t(G),t E G3 , where rn(G) is the space of
G
regular signed Borel measures on G In fact let Yp = "X

where p = . (is a function!), so that for I E ,

(Y (t)) = {^g,t)(dg) jG(s t),eZ(ds) = (4'20z)(t)
C G

= (p.*oZ) ^ (t) = 2(f^Kg,t)(p.*Z)(dg))

G
using the covolution products appropriately (cf., e.g. [19]).

Thus L*Z is a vector measure on G and 1%i*Z'(G)

141(G) 11Z"(G) < - Thus Y is a Fourier transform of

u*Z . Identifying LI(G) 1 - M(G) as ZI:A - I f(t)dt, the

sufficiency proof of theorem and the above lines show that

(G) can be replaced by (G) everywhere in that result.

Taking I = L2(P) so that V-boundedness is the same as

weak harmonizability, the above theorem together with Theorems

3.3, 6.3, yield the following two summary statements on char-

acterizations of weakly harmonizable random fields.

2XTheorem 7.3 Let G be an LCA group, I L (P) and X:G L'(G)
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be a weakly continuous mapping. Then the following statements

are equivalent:

(i) X is weakly harmonizable

(ii) X is bounded and V-bounded

(iii) X is the Fourier transform of a regular vector measure

on G into I
(iv) foreah p i() , the process Y = Xp:G L

(iv) for each p E ,theprocess = LO(P) is

weakly harmonizable.

Furthermore, the following implies (i) - (iv):

(v) if 9 = s9-pX(g),g E GI c I , then there exists a weakly

continuous contractive positive definite family of

operators (T(g),g E G] c B(9) such that T(O) = identity,

and X(g) = T(g)X(O), g E G

In order to present a similar description of the dilation

results, these individual statements should be couched in terms

of classes. Let us therefore define various classes in I

= the set of bounded weakly continuous V-bounded random

fields on G

= the set of weakly harmonizable random fields on G

= the class of all random fields which are Fourier trans-

forms of regular vector measures on G .

= the module over LI(G) of all functions on G*

in Lx(G)

P = the class of all random fields on G - X which are

projections of stationary fields on G N h, where

Z X is some extension (or super) Hilbert space of
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Then the following result obtains:

Theorem 7.4 With the above notation, one has a = = P

ljW.

These two theorems embody all the known as well as new

results on the structure of weakly harmonizable processes or

fields. Some applications and extensions will be indicated

in the rest of the paper.
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8. Associated spectra and consequences. For a large class

of nonstationary processes, inclt'ding the (strongly) harmon-

izable ones, it is possible to associate a genuine (non negative)

spectral measure and study some of the key properties of the

process through it. One such reasonably large class, isolated

by Kampe de F~riet and Frankiel ([151-[171), called class

(KF) in [311, is the desired family. This was also considered

under the name "asymptotical stationarity" by E. Parzen, (cf.

[14] with the same name for a sub class), and by Rozanov ([341,

p. 283) without a name. All these authors seem to have arrived

at the concept independently. But it is Kampe de F~riet and

Frankiel who emphasized the importance of this class and made

a deep study. This was further analyzed in [31].

42
If X]R + LO(P) is a process with covariance k(s,t) =

E(X(s)-X--)) , then it is said to be of class(KF), after its

authors [15]-[17], provided the following limit exists for

all h ER :

r(h) =lim TI k(ss+lhI)ds = lim r (h) (88)
T4+c T 0 T (88

It is easy to see that rT(.) , hence r(.) , is a positive

definite function when X(') is a measurable process. If

X(') is continuous in mean square, the latter is implied.

It is clear that stationary processes are in class(KF). By

the classical theorem of Bochner (or its extended form by F.

Riesz) there is a unique bounded increasing function FIR 4] +

such that

r(h) = j eith F(dt) , a.a'(h).(Leb) (89)
SR
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This F is termed the associated spectral function of the

process X . Every strongly harmonizable process is of class

(KF). This is not obvious, but was shown in ([34], p. 283),

and in [31] as a consequence of the membership of a more general

class called almost (strongly) harmonizable. The latter is

not necessarily V-bounded and so the weakly harmonizable class

is not included. (Almost harmonizable need not imply weakly

harmonizable.) Since the bimeasure of (30) is not necessarily

of bounded variation, the proof of [34] given for the strongly

harmonizable process does not extend. Perhaps for this reason,

Rozanov (cf. [34], footnote on p. 283) felt that the weakly

harmonizable processes may not be in class(KF). However, a

positive solution can be obtained as follows:

Theorem 8.1 Let X:M -# L2(P) be weakly harmonizable. Then

X E class(KF) , so that it has a well-defined associated spectral

function.

Proof. Since X is weakly harmonizable,

X(t) = J e i t % Z(d%) , t E R ,

2
for a stochastic measure Z on ]R into LO(P) , and if

F(A,B) = (Z(A),Z(B)), then F:R x R 4 M is a bounded bi-measure.

Considering (88) for h 2 0 (the case h < 0 being similar)

one has
T-h 1 T-h

r (h) _ * 0 k(s,s+h)ds, k(s,t) = (X(s),X(t)) -

E(X(s)Xt))

To show that lim rT(h) exists it suffices to consider

T T- ~ T___1* k(ss+h)ds 1 E(X(s)'Xsh))ds
T 00 T J0
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= E4( Tds I ei kZ(dk) e
0 JR IR

and show that the right side has a limit as T - . Let

2 1== L 0 (P) , and Z = L (P) Since Z:R 4 X , Z = Z:B 4

are stochastic measures, one can define a product measure on

IR x ]R into Z , using the bilinear mapping (x,y) -* xy

of I x 1 Z , as the pointwise product which is continuous

in their respective norm topologies. Under these conditions

and identifications, the product measure Z 0 Z:0 x 0 4 Z is

defined and satisfies (D-S integrals):

5f(s,t)(Z®&Z)(ds,dt) =5Z(ds)ff(s,t)Z(dt)=,fZ(dt)5f(s,t)Z(ds); j
JRA~R JR JR (9 Im m (91)

for all f E Cb(Rx]R) , by ([5], p. 388). In most of the work

on product vector measures, Dinculeanu assumes that they are

"dominated". However, as shown in a separate Remark (cf. [51,

p. 388; cf. also [71, Cor. 3), such a product measure as in

(91) is well-defined, eventhough it need not be "dominated".

It has finite semi variation, and !IZZiflMR) JZ'IIR)"'12 =R)

( I!R)) 2 < ,so that Z 9 Z is again a stochastic measure.

Letting f (%,%') = e i s  si(s+h)X' sh E CbRR)
s,h

(91) becomes:

eiSXZ(dX)j e-i(s+h) Z(dX' )_ eiS( ')ih'z(dxdX')9
JR JR 11RAR '(92)

the right side being an element of LI (P) Applying the

same calculation to the measures Z ® Z:13(Rx) - Z and

P:R([O,T]) 4]R+ , (p is Lebesgue measure), with (x,a) 4 ax

being the mapping of Z xJR 4 Z , one can define
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0 (Z0Z):fi(0,T) x I3QRAR) -+ Z and hence

T T

0 SIR>IR 1RAR 0

Writing 4.(dt) as dt, (90) - (93) yield:

E JI dtf ei(X- i 1Z (d%,dk'))
T0 MR hRI

=E (fA ehXZ 9 Z(d)X,dX')4 T e's(-k) ds)

ih% I _____-%__ _I

E(f e i-xx' &[# + 6,,,]Z(&Z(d%,dx,'))
TIRA~R (94)

But the quantity inside the expectation symbol E is bounded

for all T , and since the dominated convergence is valid for

the D-S integral ([8], IV.lO.l0) , constants being Z 0 Z-inte-

grable, one can pass the limit as T 4 + under the expec-

tation as well as the D-S integral in (94). Hence

1lim 5k(s,s+h)ds =E(f e-h)X 6 Z & Z(dX ,d'))
TOoT0 IRXR.

= e - h'6,,,E(ZOZ(dx,dX'))

IRhI

I F(dk,dX'

where F is the bimeasure of Z . Hence lim r T(h)

r(h) exists and

r(h) jP ei'hG(dk)
IR

where G:A?-45 -1 A 6 1 F(dx,dAI),AEe, is a positive finite measure

which therefore is the associated spectral measure of X E

class(KF). (Here 7MJ 2 J+R is the projection.)This completes the proof.

The above result implies that several other considerations

of [34] hold for weakly harmonizable processes.
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As another application of the present work, especially

as a consequence of Theorem 6.1, the following precise version

of a result stated in ([341, Thm.3.2) will be deduced from the

corresponding classical stationary case.

22

I Theorem 8.2 Le_t X'2R - L2(p) be a weakly harmonizable process4

with Z:iR - LO(P) as its representing stochastic measure. Then

for any - X I < < writing Z(X) for Z((--,X)) ,

one has T e-itk2_e-tXl z(X2 +)+z(X2) Z(XI+)+Z(% i-)
l'i-m f -it X(t)dt 2 (95)
T - -T

where 1i-m is the L2 (P)-limit. Further the covariance

bimeasure F of Z can be obtained for any A =

B = (X{,X-) -X s ix t -%t

lim -e e -e r(st)ds dt = F(AB) (96)
0 TI,T2 - -TI-T2

provided A,B are continuity intervals of F in the sense that

F((-',Xj+), (-aXjF((-,F((-%,j)) , j = 1,2, and where r(-,-)

is the covariance function of the X-process. In particular,
I T

if SR - C is continuous, T J0 S(t)dt- a0  exists as T-

and lim r(s,t) = 0 , then for the observed process
-IsI+ItI4w

Y(t) - S(t) + X(t) , so that S (.) is the nonstochastic'signal'

and X(-) is the weakly harmonizable 'noise', the estimator
TJ- 2 2

ST=T Y(t)dt a0  in LO(P) (i.e. E(IST-ao ) 4 0) as

T - . Thus ST is a consistent estimator of a 0 , and in

other terms, both X- and Y-processes obey the law of large

numbers.
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Proof. The key idea of the proof is to reduce the result to

the classical stationary case through an application of the

dilation theorem. Thus by Theorem 6.1 , there exists a pro-

2 - 2
bability space (QE,P) , with LO(P) D L2(P) , and a stationaiy2i
process Y2R 4 LO(P) such that X(t) --QY(t), t EIR where

Q is the orthogonal projection on L0(p) with range L2(P)

There is an orthogonally scattered stochastic measure Z:8 - L0 (P)

such that

Y(t) J' 2 e (dX) , t EIR1  (97)
JR

and Z(A) = Q.(A) , A E 8 , where Z:e 4 LO(P) represents

the given X-process. Since Q is bounded, as is well-known,

it commutes with the integral as well as the l-i-m . Thus

(95) is true for the Y-process with Z in place of Z there

(cf.,e.g.,[6], p. 527). Then the result follows on applying

Q to both sides and interchanging the l-i-m- as well as the

integral with Q , which is legitimate. Hence (95) is true

as stated.

Next consider the left hand side (LHS) of (96). With

(95) it can be expressed as:

LHS - lim E( 2e -e X()(e -e X(t)]-dsdt)LH i 4C I Jr2 -is X~)][-it

T'T 2 --T1 -T2

T iX2-s~ l  ) T2 e -e
- lim E[ 1eeQo e X(t)) dt]

T IT 2 4 -T I  
T2

E z(%2+)+Z( 2 -) Z(X1 +)+Z(X-) z(x?+)+Z(X -) Z(Xji)+Z(Xj))]

- F(A,B)
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by the continuity hypothesis on F , after expanding and

taking expectations. This proves (96).

Finally, if Y(t) = S(t) +X(t), t ER , let aT

E(ST) -- S(t)dt Noting that Y E class(KF) since X
0does (cf. Thin 8.1), and aT 4 a 0 , as T 4

T 0

2 r'I T r(s,t)ds dt + 2IaT-aO12TO r'01) T V 00

.1 T 2 (98)
'IrT I hd+2ja _aO1

where, as usual, rT(-) is given by (88) Since rT(h) - r(h)

due to the fact that Y E class(KF) , and since r(s,s+h) 4 0

as IsI -. by hypothesis together with the fact that

Ir(s,t< (r(s,s)r(t,t)) / 2 ! M2 < = where !IX(t)Jl ! M <

(X being V-bounded), one can invoke a classical result on

Cesaro summability (cf., [81, IV.13.83(a)). By this result

r(h) = 0 for each h EIR . Actually rT(h) 4 r(h) (=0)

uniformly in h on compact sets of IR . It follows that

E(IST-a 012) 0 , and this completes the proof of the theorem.

Remark. The key reduction for (95), which is used in (96), is

possible in the above proof since the linear operation of Q

on the process mattered. However, for Theorem 8.1, the dilation

result itself is not immediately applicable since the problem

there is non-linear, and one had to use alternate arguments as

was done there. Thus the point of the general theory here is

to clarify the structure of these processes, and a reduction

to the stationary case need not always be possible or essential.
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9. Multivariate extension and related problems. Here a multi-

dimensional extension of weakly harmonizable processes and the

filtering problem on them will be briefly discussed. Even-

though some results have direct k-dimensional analogs (k t 2),

there are some new and non-trivial problems in this case for

a successful application of the theory. The infinite dimen-

sional case will not be considered here since the key finite

dimensional problems are not well-understood and resolved.

2 k 2 kLet L (P,C )(= L (0,,P;Ck)) be the space of equivalence

kAclasses of measurable functions f:n -+ , the complex

k-space, such that (i) 7I2 f2 is P-integrable,
i=l

and (ii) E(f) = jf(w)p(dw) = 0 , or equivalently, E(fi) =

fi(w)P(dw) = 0 , i = 1,...,k , where f = (fl, ... ,fk), If
kis the Euclidean norm of f in M , and (Q,Z,P) is a

probability space. If f,g E L2(PC k ) , define 12 (f,f)

where the inner product is given by
k

(~g) = J (f(w),g(w))P(du) =i fi()

Then X =L(P, k)becomes a Hilbert space of k-vectors wtThenI =LO(,(C becoes Hiber spae o Rvecorswith

zero means. If k = 1, one has the space considered in the

2preceding sections (A - L0(P,D))

Definition 9.1 Let G be an LCA group. Then a mapping

X:G 4 1 is a weakly or strongly harmonizable vector (or

k-dimentional) random field or 'process' if for each a =

k k
(al,... ,ak) E (E the mapping Ya = a.X( aiXi): Gk-i

is a (scalar) weakly or strongly harmonizable random field.
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Similarly a vector stationary, Karhunen, or class(C),

processes are defined by reducing to the scalar cases.

It is immediate from this definition that the component

processes are also harmonizably or stationarily etc. correlated

according to the class they belong. Thus if ra is the

covariance function of the Ya-process and R is the covariance

matrix of the X-process, so that ra (g,h) = E(Ya(g)A(h))

and R(g,h) = E(X t(g)X(h)) where X(g) is a kth order (row)

vector and "t" denotes the conjugate transpose of a vector

tor matrix, then ra (g,h) = aR(g,h)a . With this notation,

the integral representations of multivariate weakly and strongly

harmonizable random fields can be obtained, using Theorem 3.3,

in a straightforward manner.

Theorem 9.2 Let G be an LCA group and X:G I = LQ(P,a k )

a weakly continuous bounded mapping. Then X is weakly

harmonizable iff there is a stochastic measure Z on

& -* I (or if Z(A) = (Zl(A),...,Zk(A)), Ac G is a Borel set,

then each Z. is a stochastic measure on G 4 , j = 1,...,k),

such that

X(g) = §^ (g,s) Z(ds) , g E G , (99)
G

where G is the dual group of G The mapping X is strongly

harmonizable if further the matrix F = (Fij,,=I,...,k)

with F(A,B) = ((Z.(A),Z.(B)),j, =l,...,k) is of bounded

variation on G , or equivalently each Fj. is of bounded

variation on C The covariance matrix R is representable

as:

R(g,h) = (fj. Kg,s)Kht F(ds,dt) , g,h E G , (100)
GG
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where the right side is the MT-integral, or the Lebesgue-

Stieltjes integral, defined componentwise, accordingly as X

is weakly or strongly harmonizable, and where F is a positive

definite matrix of bounded bimeasures or of Lebesgue-Stieltjes

measures. Conversely, if R(',o) is a positive definite matrix

representable as (100), then it is the covariance matrix of

a multivariate harmonizable random field.

kSketch of proof. Let a E Uk be arbitrarily fixed and con-

sider Ya = a'X(=aX) If X is weakly harmon'zable, so

that Ya is also, then by Theorem 3.3 (trivially extended

when IR is replaced by G) , there is a stochastic measure

Z on G 1$ such thata

Ya (g) = JU Kg,s) Z (ds) , g E G
G a

From this and the definition of Ya , it follows that

Z(.) (A):(k - is linear and continuous. Hence there is a

Z on G 4 X**(=I, by reflexivity) such that Za(A) a.Z(A)

and it is evident that Z is a-additive on R(G) -+ so that

it is a stochastic measure. It follows from the properties

of the D-S integral that:

Ya (g) = a.X(g) = J_~g,s) a.Z(ds) = a.J~jg,s>Z(ds) , (101)
G G

where the last integral defines an element of I This

implies (99) since a is arbitrary and X(.) as well as the

integral operator are continuous. The converse is similarly

deduced from the corresponding part of Theorem 3.3.

If X is strongly harmonizable, then so is Ya and if

tF is its c6variance bimeasure, then F = aFa wherea a

F(A,B) = ((Z.i(A) ,Z I(B)), j,2e=l,2,. .. ,k) .Now taking special
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values for a in E it follows immed ately that each

component Fj. of F is of bounded variation. Interpreting

(100) componentwise, the result follows from the scalar case.

The same representation holds with the MT-integration for the

weakly harmonizable case. All other statements, including

the converses, are similarly deduced. This terminates the

sketch.

By an analogous reasoning, it is evidently possible to

assert that there is a 2-majorant of Z , and the X-process

has a (vector) stationary dilation. These results are of real

interest in the context of the important filtering problem

which can be abstractly stated following Bochner [2].

If X:G 4 is a random field, a (not necessarily bounded)

linear operator A:1 - I is called a filter of X , if

cormutes with the translation operator on X , i.e., if

(hX)(g)= X(hg) , then Th(AX) = A(ThX) , where domain

(A) (ThX(g), g E G, h E G1 The problem is to find solutions

X of the equation:

AX = Y (E I) , (102)

such that if Y is A given weakly or strongly harmonizable

random field so must X be.

For the stationary case, a general concept of filter was
m

discussed by Hannan [111. If k = 1, A E a..&. is a reverse
i=1 . 1

shift operator with G = , (so AiX(t) = X(t-i)) and Y is

stationary, then this problem was completely solved'by

Nagabhushanam [25], and by Kelsh [18] in the strongly harmon-

izable case. In both these studies, the conditions are on the
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measure function F of (33). If k > 1 , under the usual

assumptions on the random fields, the following new questions

arise with (99) and (100). Frequently employed general forms

of A include the constant coefficient difference, differen-

tial, or integral operators, or a mixture of these. For
m

instance, if A = E A.D j , where AjIs are k-by-k constant

j=OJ J

matrices, and Di = .d , (G]R) them (102) takes the following
dti

form in order that it admit a (weakly) harmonizable solution

for a harmonizable Y where X(j ) denotes the mean-square
.thj derivative (assumed to exist):

m

SR eitXzy (d) = Y(t) = (AX)(t) = joAjX((k-j)
j=0

m i(t-j)X
E A5 e t - (iX)J Zx(d%)

j=0

= 5T(%).eitx Zx(dX) (103)
m -ijX )j

where T(X) = E A.e (iX) , called the generator of A in
j=0 J

[2], and Zx,zy are the representing stochastic measures of

X-and Y-processes. Clearly the existence of solutions of (102)

depends on the coefficients Aj's determining the analytical

properties of the generator T(.) If the process is strongly

harmonizable then (103) implies (*-denoting conjugate transpose)

R (s,t) = S 5 e  F (dX,d')

y IRIe3-R y

= 5R e' s T(X)Fx(dX,dX')(T(X')eitX')* , (104)

RR

where F and F are the k-by-k matrix covariance bi-
x y

measures of X- and Y-process'es. For a special class of
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strongly harmonizable k-vector processes, recently Kelsh

[181 found sufficient ccnditions on the generator T(.) for

a solution of (102) when differential operators are replaced

by difference operators so that (%:T(%) = 01 is finite.

The solution here hinges on the properties of the structure

of the space:
2 k

L (Fx) = £T:]R -4 B(C ), measurable, IJ7 f T(X)Fx(dX,dX')T*(X')1'<-}
(105)

Since the integral in (105) defines a positive (semi-) definite

matrix, its trace gives a semi-norm. The measure function F

being a matrix bimeasure, several new problems arise for an

analysis of the L2(Fx)-space. For the weakly harmonizable

case, an extension of the MT-integration , to include such

integrals, should be established. The resulting theorey can

then be utilized for the multivariate filtering problem. Even

if k = 2 , the question is non-trivial, involving the rank

questions of F Application of the dilation results to
x

the filtering problem has some novel features, but it does

not materially simplify the problem.

Another interesting point is to seek "weak solutions"

of the filtering equation (102) in the sense of distribution

theory. This idea is introduced in [2]. If q is a class

of functions on IR (e.g., Schwartz space Cm(R)) with a

locally convex topology, then one says that (102) has a

(weak) solution iff for each f E q

f(t)Y(t)dt = f(t)AX(t)dt = j(Af)(t)X(t)dt , (106)
IRIR IR
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where A:q - Q is an operator, associated with A , defined

by the last two integrals above. It is an "adjoint" to A

For instance, if A is a differentail operator with T(.) as

its generator, if k = I and X,Y are stationary, then

is given by

(Af)(t) = f T(t-k)f(X)Fx(dX) , f E q (107)
IR

where F is the spectral measure function of the X-process.

Clearly many other possibilities are available. Thus there

are a number of directions to presure the research on these

problems, and the paper [2] has a wealth of ideas of great

interest here.

This essentially includes what is known about weakly

harmonizable random fields and processes, as far as the

structure is concerned. Since the class(C) of Cram6r and its

weak counterpart (cf. Definition 3.1) and the Karhunen

class of processes, defined by (31), are natural generali-

zations of harmonizable and stationary classes, it is reason-

able to ask whether the latter is a dilation of the former,

i.e. is the analog of Theorem 6.1 true for weakly class(C)?

A restricted version can be established by the same methods,

but the exact (general) result presents some difficulties.

This question will be briefly discussed here in order to

include i: in the set of problems raised by the present study.

Recall that a mapping X:l -+ L2 (P) is a Karhunen process,
0

if its covariance function r(.,.) admits a representation

r(s,t) = s(%)g---) F(dk) , s,t.E IR ,

iI
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relative to a family [gs(.), s EJR} of measurable functions

and F which defines a locally finite positive regular (or

2
Radon) measure on IR and gs E L (F) , (cf. also [101, p. 241).

As an immediate consequence of Theorem 3.2 (cf. Remark 2

following its proof), an integral representation for Karhunen

processes can be given:

Proposition 9.3 Let S be a locally compact space and

2
X:S + LO(P) be a process of Karhunen class relative to a

locally finite positive regular (or Radon) measure F on S

and a family (gt,t E S c L 2(F) , the space of all scalar square

integrable functions on (S,B,F) Then there is a locally

2
bounded regular (or Radon) stochastic measure Z:% 0 + LO(P)

where B0 c B is the 6-ring of bounded sets, such that (i)

E(Z(A).Z( B)) = F(AnB) , A,B E R0 , so that Z is orthogonally

scattered, and (ii) one has

X(t) = S gt ()Z(dX) , t E S , (108)

where the right side symbol is a D-S integral, (cf. also [39], § 1.)

Conversely, if X:S - L(P) is a process defined by (108)

relative to an orthogonally scattered measure Z on S and

[gt,t E S) satisfies the above conditions, then it is a

Karhunen process with respect to the family gt,t E Sj and

F defined by F(ANB) = (Z(A),Z(B)) Moreover AX = IX(t),

SI c S 4 = 9[Z(A),A E BOI c Le2 an_Ld 34 = 34 iff

'.gt~t E S} is dense in L2 (F)

A proof of this result is essentially given in ([10], p.

242) and is a simplification of that of Theorem 3.2. Even a
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multidimensional version is not difficult, which in fact is

analogous to that of Theorem 9.2 above. Actually, the version

in [10] is sketched for the k-dimensional case.

It follows from the arguments of the D-S theory of inte-

gration that a bounded linear operator T and the vector inte-

gral such as that of (108) commute even if Z is of locally

finite semi variation on the locally compact space S . This

extension of ([8], IV.10) was proved in ([39], p. 79), and

42shown to be easy. Thus if X:S 4 LO(P) is a Karhunen process,

2so that it is representable as in (108) and if T E B(L0 (P))

then it follows that

TX(t) = jsgt (%)ToZ(dX) , (109)

and it is simple to see that Z = ToZ is a stochastic measure of

locally finite semi'variationbut not necessarily orthogonally

scattered. Hence by Theorem 3.2,TX is weakly of class(C).

In the opposite direction, for a process [X(s),s E S} E

weakly class(C), one cannot apply the theory of Section 5

above if only (gtt E S c L 2(F) , and no further restrictions

are imposed, where L 2(F ) is the space of strong MT-integrable

functions relative to the covariance bimeasure F representingx

X:(cf. (105), with k=l). The needed analogs of Theorem 5.5

and Proposition 5.6 are not available. Suppose now that Fx

is such that if each gt is a bounded Borel function and

M(S) is the uniformly closed algebra generated by (gtt E S}

then M(S) c L2(F) . Let Tgt X(t) sgt()Z(dX) and
S

extend T linearly to M(S) .Then T E B(M(S),3U) W ~hen
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M(S) is given the uniform norm. This forces Fx to be of

finite semivariation! Under this assumption T is 2-absolutely

summing, and Proposition 5.6 is applicable. Hence

!Tf~L 'lf2L f E M(S) (110)

for a finite measure 4 on S . (A similar result seems

2possible if Z is restricted so that T E B(L (Fx),U),

defined above is Hilbert-Schmidt by [201, p. 302. But it

is not a good assumption here.) Thus one can repeat the proof

of Theorem 6.1 essentially verbatim and establish a dilation

result. Omitting the details of this computation one obtains the

following result.

Theorem 9.4 Let S be a locally compact space and X:S 4 L (p)=N
0

be a Karhunen process relative to a Radon measure F and a

family [gt~t E S3 c L2(F) . If Q:H A is any (bounded)

projection, then X(t) - QX(t), t E S , is a process in weakly

class(c) On the other hand if [X(t),t E S] is an element

of weak class(C), and so is representable -n the form (108) for

some family (gt,t E S3 c L 2(Fx) where F is a bounded
x x

covariance bimeasure of the process, and if each is also

bounded, then there exists an extension Hilbert space X D i

a probability space (Q,E,P) with X = L2(P) , and a Karunen

process Y:S 4 H such that X(t) = QY(t), t E S where Q

is the orthogonal projection on h with range U

This result points out clearly the need to consider the

domination problem for other Banach spaces than those covered
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by the results of Section 5. Indeed the associated abstract

problem of classifying Banach spaces admitting a positive

p-majorizable measure for each vector measure from a proba-

bility space into that space is essentially open. Also the

preceding theorem and related analysis presumably extend to

classN(C)-processes of Definition 3.4. This will be of inde-

pendent interest in addition to its use in a treatment of the

general filtering theory on these processes. Other problems

noted in the main text of the paper are of both methodological

and applicational importance for a future study.
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